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Abstract

A key application of Laser Detection and Ranging (LADAR) systems is measure-

ment of range to a target. Many modern LADAR systems are capable of transmitting

laser pulses that are less than a few nanoseconds in duration. These short-duration

pulses provide excellent range precision. However, randomness in the detected laser

signals places limits on the precision.

The goal of this dissertation is to quantify the range precision limits of LADAR

systems. The randomness in the time between photon arrivals, which is called shot

noise, is discussed in depth. System-dependent noise sources such as dark current and

detector gain variation are considered. The effect of scene-dependent parameters in-

cluding background light, target obscuration, and target orientation is also discussed.

Finally, noise mitigation strategies such as pulse averaging and gain equalization are

described and tested on simulated and real LADAR data.
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Range Precision

of LADAR Systems

I. Introduction

Laser detection and ranging or LADAR systems have developed rapidly in recent

years. LADAR is analogous to radar, but is done at optical wavelengths rather than

radio frequencies. The use of optical wavelengths, which are roughly one-thousandth

the length of the shortest radar wavelengths, yields many benefits and challenges.

LADAR systems are used for many remote sensing applications. They are

used to measure wind speeds in clear air [19]. LADAR systems with two or more

wavelengths are used to detect and measure concentrations of certain gasses in the

atmosphere [28]. Some LADARs interfere received laser light with a local laser in

order to measure Doppler shift [8]. These coherent LADARs are sensitive enough to

measure surface vibrations on remote objects [17]. However, a primary application of

LADAR has always been the measurement of range to a target.

Different LADAR technologies are used to measure target range with a laser.

Amplitude and frequency modulation of continuous-wave lasers has been used to

measure range [44]. But the most commonly-used technique is to transmit a short-

duration laser pulse and measure its time of flight. Multiple range measurements

taken along different lines of sight can be combined to create a three-dimensional

image of a scene. These three-dimensional images are valuable in applications such

as mapping and target recognition.

The precision of range measurements made with a LADAR system is limited by

noise. The fundamental source of noise in a laser signal is the random time between

photon arrivals. This phenomenon, called shot-noise, can be modeled as a Poisson

random process [21]. Other noise sources in LADAR systems can also be modeled as

Poisson processes [31].
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Noise in LADAR systems is not always modeled using the Poisson distribution.

The noise in systems with high levels of electronic noise can be accurately character-

ized with a Gaussian distribution [22]. The various noise models (Poisson or Gaussian)

can be used to derive limits on the precision of range measurements.

This dissertation examines several different signal and noise models for LADAR

systems transmitting short pulses of laser light. Limits on range precision are derived

for different scenarios such as calculating range to a target that is partially obscured

or is tilted at an oblique angle when the LADAR observes it. Electronic effects in

systems can distort the data recorded by a LADAR. This distortion can affect range

measurements. Thus, methods of correction are developed and tested. In all cases, the

goal of this dissertation is to characterize the precision of LADAR range measurements

and to develop new methods that improve the process of range estimation.

1.1 LADAR Systems

1.1.1 LADAR System Diagram. All LADAR systems include a laser trans-

mitter and a receiver designed to detect laser light reflected from a target. A LADAR

system block diagram is shown in Fig. 1.1. The transmitter emits laser light toward

the target. In an imaging system the target is the solid object in the scene. However,

some LADAR systems are designed to observe laser light scattered from aerosols. A

fraction of the light hitting the target is reflected into the LADAR’s receiver. That

light is detected and processed by the system.

A wide variety of lasers have been used as LADAR transmitters. Wavelengths

between the ultraviolet and the long wave infrared have been employed. However,

it is most common to use lasers that operate in the near infrared when building

a LADAR system. The near infrared band of wavelengths offers reasonably good

eye-safety. Because most optical telecommunication equipment operates in the near

infrared, optical components designed to operate at those wavelengths are plentiful

and relatively inexpensive.
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Figure 1.1: Block diagram used to model a LADAR system.

LADAR systems also need receivers to detect reflected laser light. The receiver

consists of a lens that focuses reflected laser light onto a photodetector. The photode-

tector converts the received light into an electrical signal. That signal is processed in

order to measure information about the target such as range, reflectivity, and velocity.

Some LADAR systems use the same aperture to transmit and receive laser light.

Such systems are called monostatic. Systems with separate transmit and receive

apertures are referred to as bistatic. Bistatic systems usually have transmit and

receive apertures that are located very near each other.

1.1.2 Pulsed LADAR Systems. Laser detection and ranging systems can be

used to measure range to targets. In order to measure range, typical LADAR systems

transmit short pulses of laser light. There are alternative methods of measuring

target range such as with a chirped waveform and coherent processing. But the most

common method of range estimation involves measuring the time of flight for a short

duration laser pulse.

Typical LADAR systems transmit short laser pules using a process called Q-

switching. The Q-switching process allows relatively large amounts of energy to build

within the laser cavity before being released over a very short period of time. The

energy is released from the laser cavity using a device such as a rotating mirror or
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a Pockels cell crystal [38]. Laser pulses created by Q-switched systems can have

durations measured in nanoseconds.

Given a fixed pulse energy, shorter pulses provide better range precision. How-

ever, shorter pulses require optical components and photodetectors that can tolerate

higher peak powers. Shorter pulses also demand faster sampling. Generation of

laser pulses is often accomplished using a component within the laser cavity called

a Q-switch. Shorter pulses necessitate the use of more sophisticated and expensive

Q-switches. These engineering issues place practical limits on how short a laser pulse

can be made. Current LADAR systems typically transmit pulses that are a few

nanoseconds long and sample those pulses at a rate around one Gigahertz.

The short pulses created by the Q-switching process yield excellent range preci-

sion. LADAR range precision of less than 3 cm has been claimed [2]. However, short

pulses place demands on the detection and digitization hardware in LADAR systems

since nanosecond-class pulses have bandwidths on the order of a Gigahertz.

1.1.3 Imaging LADAR Systems. Development of LADAR imaging systems

is advancing rapidly. Early LADAR imaging systems used few detectors and usu-

ally relied on mechanical scanning systems to produce images with large numbers

of pixels. Newer systems use arrays of photodetectors and can produce images with

large numbers of pixels without the use of mechanical scanning. Imaging LADARs

with more than ten thousand pixels are commercially available. However, it has been

shown that the photodetector arrays in these compact imaging systems can have un-

desirable electronic effects that degrade range precision. A key undesirable effect that

has been observed in photodetector arrays is the phenomenon of gain variation.

1.1.4 Airborne LADAR Systems. Airborne LADAR systems are used for

three-dimensional mapping and applications such as target recognition. Typical sys-

tems transmit beams through apertures that are several inches wide and use pulses

that are a few nanoseconds in duration. If the pulse reflects off a target that is tilted
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Figure 1.2: Block diagram describing a LADAR system’s re-
ceiver and output signal.

with respect to the line-of-sight, then the reflection process will elongate the received

signal as compared to transmitted pulse. If the range is more than a few kilometers

and the target is tilted more than about forty-five degrees, the increase in the width of

the received pulse produces a significant drop in range precision. The loss in precision

due to target tilt is quantified in this dissertation.

1.2 LADAR Signals

1.2.1 LADAR Receivers. A LADAR system makes measurements of target

parameters by processing the laser signal detected by its receiver. A LADAR receiver

block diagram is shown in Fig. 1.2. Transmitted laser light reflects off of objects in the

scene. Some of the reflected laser light is intercepted by receiver optics. Those optics

focus the light onto a photodetector, which is small compared to the receiver aperture.

The photodetector converts the focused optical field into an electrical signal. Typical

detectors are photomultiplier tubes (PMT)s, p-i-n diodes, and avalanche photodiodes

(APD)s.

There is noise in the received signal. One source of noise is background light

detected by the photodetector. The background light level is roughly constant over

the time it takes to record a laser pulse. Thus, it interferes with detection of that

pulse and degrades measurements of signal parameters such as time of flight. There
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are also electronic noise sources in the system. Photodetectors generate false signals

called dark current. The signal quantization process (analog-to-digital conversion)

also introduces error. These processes are all sources of noise in the received signal [30].

A LADAR must make multiple target range measurements to create a three-

dimensional image. Arrays of avalanche photodiodes are used in LADAR receivers to

create three-dimensional images. Avalanche photodiodes convert laser light into an

electrical signal called the photocurrent. The photocurrent is related to the irradiance

of the received light by a parameter called the gain. Ideally, the gain would remain

constant over time. However, it has been demonstrated experimentally that the gain

varies in some situations due to limitations in photodiode array design. It has also

been shown that gain equalization techniques can reduce some of the gain variation

in the data.

In order to characterize gain variation in LADAR detector arrays, nonlinear

models are also being used to describe received LADAR signals. The nonlinear models

trade simplicity for realism. It has been shown in a real LADAR that the nonlinear

effects are significant and that attempts should be made to correct for these effects

[37]. Correction methods were proposed, but little work was done to determine range

precision in the nonlinear signal model.

1.2.2 LADAR Signals. The time between photon arrivals at the detector

varies. The fluctuating number of photons arriving in a time interval is called shot

noise. Shot noise is a source of error in LADAR measurements. Goodman has shown

that when measuring coherent or partially coherent light, the number of signal pho-

tocounts observed in a time interval is a negative binomial random variable [11, 13].

Negative binomial random variables have Fano factors (the ratio of the variance to the

mean [7]) greater than one. A high Fano factor indicates that the signal fluctuation

is large compared to the signal energy. LADAR systems are often designed to reduce

the Fano factor through the use of diversity. Spatial averaging of statistically inde-

pendent laser speckle cells and the detection of multiple polarizations are common
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methods used to increase diversity. As diversity increases, the Fano factor approaches

one, and the negative binomial distribution converges to the Poisson distribution. Re-

gardless of the diversity, the Poisson distribution is also an accurate approximation

to the negative binomial distribution whenever the mean number of photocounts is

low [13]. Because the Poisson distribution can accurately approximate the negative

binomial distribution, it is used in this dissertation to model the number of observed

photocounts in a LADAR signal.

In addition to the received laser pulse, signals are produced by noise sources.

Noise sources include background photons, dark current, and thermal noise [21].

These sources of noise corrupt the LADAR signal and degrade the precision of range

measurements. Arrivals of background photons, dark counts, and thermal noise counts

are random. In [21] and [31], it is assumed that these noise sources are Poisson pro-

cesses. This model is reasonable since it only requires independent exponentially-

distributed times between noise incidents. The number of counts produced by a

Poisson process within a specified time interval is a Poisson random variable. Sums

of statistically independent Poisson random variables are Poisson with mean equal

to the sum of the means of the constituent random variables. Thus, the entire ob-

served LADAR signal (laser pulse and noise) can be modeled as a sequence of Poisson

random variables.

The Poisson distribution accurately characterizes the signals recorded by shot-

noise limited LADAR systems. However, the noise in a LADAR signal is sometimes

dominated by electronic noise sources [9]. In that case, the stochastic component of

the LADAR signal can be modeled with a Gaussian distribution [22]. The Gaussian

distribution is often easier to work with than the Poisson distribution.

1.2.3 Signal Parameter Estimation. LADAR signal processing involves es-

timating parameters such as range, amplitude, and background level. Methods of pa-

rameter estimation include maximum likelihood estimation (MLE) and least squares.
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In some cases, the parameter estimates are derived empirically because there are often

simple and nearly-optimal estimators of signal parameters available.

Though many different parameters can be estimated, the key parameter is usu-

ally range to target. In order to make a precise measurement of target range, the

received laser pulse is usually match-filtered. After filtering, a peak-fitting routine is

used to calculate a range estimate to the target. However, randomness in the signal

creates fluctuations in the output of the peak-fitting algorithm. These fluctuations

cause error in the range estimates. The distribution of the observed signal is as-

sumed known. However, the combination of matched-filtering and peak-fitting makes

it difficult, if not impossible, to derive the distribution of the actual range estimate.

Instead, the range precision is analyzed using the Cramer-Rao Lower Bound (CRLB).

The CRLB provides a lower limit on the variance of any unbiased estimate of a pa-

rameter such as range. The CRLB is valid regardless of the exact filtering and fitting

algorithms used, as long as those algorithms produce unbiased range estimates.
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II. Problem Background

Typical imaging LADAR systems transmit short pulses of laser light. Modern systems

use pulses that are only a few nanoseconds in duration. The pulses scatter off of

objects in a scene. The backscattered laser light is detected by the LADAR’s receiver.

The received signal is digitized and converted to an estimate of range to the target

based on the laser pulse’s time of flight (TOF). Multiple estimates of target range can

be combined into a three-dimensional image of a scene.

Range precision is limited by the length of the transmitted laser pulse, the

pulse’s shape, and noise sources in the LADAR system. In order to predict limits

on LADAR range precision, mathematical models of the shape of the laser pulse are

needed. Statistical methods are employed to simulate the noise sources present in the

LADAR system. In this chapter, laser beam models used in the literature and in this

dissertation are described. The stochastic methods used to simulate noise sources are

also presented.

Laser beams transmitted by LADAR systems are characterized by their shape

transverse to the line of sight (LOS) and their shape along the line of sight. The

transverse shape describes the beam’s irradiance pattern. As the beam propagates,

its transverse shape varies due to diffraction. The beam is also described by a shape

along the LADAR LOS. This shape models the instantaneous power in the beam and

can be thought of as a temporal function. The beam’s shape along the LOS varies

little as the beam propagates. However, the pulse shape received by the system can

be very different from the transmitted pulse shape because of the reflection process.

Throughout this dissertation, it is assumed that the transverse beam shape is

Gaussian. The reasons for this assumption and its consequences are discussed in

Sec. 2.1. Several different transmitted temporal (along line of sight) pulse shape

models are used in the literature. In this dissertation, either a truncated parabola

or a Gaussian function is used to describe the temporal shape of a laser pulse. The

parabola accurately models the steep leading edge of real laser pulses. It also proves

easier to work with than other temporal pulse shape models when deriving bounds
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on range precision in the presence of Poisson-distributed noise. The parabolic pulse

model is discussed in Sec. 2.1.6. The Gaussian shape does a good job of modeling the

smooth trailing edge of a laser pulse. The Gaussian model is described in Chapter

IV.

2.1 Laser Beam Propagation

The irradiance pattern of the laser beam transmitted by a LADAR system can

be many different shapes. The most common shape is a Gaussian pattern. However,

top-hat beams, which have a flat irradiance pattern as they exit the LADAR trans-

mitter aperture, can also be used. There are also higher-order modes described by

Hermite-Gaussian functions in rectangular coordinates [42] and by Laguerre-Gaussian

functions in cylindrical coordinates [3]. The fundamental mode created by a laser

resonator is the called the zero-order transverse electromagnetic or TEM00 mode.

Typical systems transmit TEM00 Gaussian beams.

Zero-order transverse electromagnetic Gaussian beams are usually used in LADAR

systems because they produce the best-quality diffraction patterns in the far field.

Beam quality is described in detail in the following section.

2.1.1 Beam Quality. In [39–41], Siegman developed a beam quality metric.

The metric is denoted M2
x . This metric is the product of the beam’s normalized

irradiance standard deviation and the beam’s normalized spatial frequency standard

deviation along an axis transverse to the LADAR line of sight. A laser beam actually

has two beam quality measurements. There is one measurement along each axis

perpendicular to the LOS (the x-axis and the y-axis). The following equations used to

calculate beam quality show it being computed along the x-axis. It is straightforward

to modify them to calculate beam quality along the y-axis in case that measurement

(M2
y ) is desired.
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Beam quality along the x-axis is [39]

M2
x = 4πσxσsx . (2.1)

The normalized spatial variance σ2
x is a function of the beam’s irradiance pattern

I0(x, y). Irradiance has units of power per area. Irradiance is the magnitude squared

of optical field U0(x, y).

I0(x, y) = |U0(x, y)|2 . (2.2)

The terms irradiance and intensity are often used interchangeably in the optics

literature [3]. However, in the field of radiometry, intensity has units of power per

area per solid angle [56]. Therefore, intensity could also be defined as irradiance per

solid angle. To avoid confusion, only the term irradiance is used in this dissertation

when referring to the optical field U0(x, y).

The normalized spatial variance σ2
x is

σ2
x =

∞∫
−∞

∞∫
−∞

(x− x̄)2I0(x, y)dxdy

∞∫
−∞

∞∫
−∞

I0(x, y)dxdy

. (2.3)

The variable x̄ in Eq. 2.3 is the beam’s irradiance centroid in the x-direction. The

beam centroid, which is the beam’s center of gravity, is (see p. 662 of [38])

x̄ =

∞∫
−∞

∞∫
−∞

xI0(x, y)dxdy

∞∫
−∞

∞∫
−∞

I0(x, y)dxdy

. (2.4)

Calculation of the normalized spatial frequency variance σ2
sx

begins with com-

putation of the two-dimensional Fourier transform of the optical field U0(x, y). This
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function is denoted Û0(sx, sy). This Fourier transform is

Û0(sx, sy) =

∞∫

−∞

∞∫

−∞

U0(x, y) exp [−i2π (sxx + syy)] dxdy (2.5)

where i =
√−1. The spatial frequency distribution Î0(sx, sy) is the magnitude squared

of this Fourier transform.

Î0(sx, sy) =
∣∣∣Û0(sx, sy)

∣∣∣
2

. (2.6)

The normalized variance of the spatial frequency distribution is

σ2
sx

=

∞∫
−∞

∞∫
−∞

(sx − s̄x)
2Î0(sx, sy)dsxdsy

∞∫
−∞

∞∫
−∞

Î0(sx, sy)dsxdsy

. (2.7)

where s̄x is the centroid of the spatial frequency distribution. This variable is com-

puted in the same way the irradiance centroid was calculated in Eq. 2.4.

s̄x =

∞∫
−∞

∞∫
−∞

sxÎ0(sx, sy)dsxdsy

∞∫
−∞

∞∫
−∞

Î0(sx, sy)dsxdsy

. (2.8)

Siegman showed in [39] that for any arbitrary laser beam

M2
x ≥ 1 (2.9)

with equality if and only if the irradiance pattern has a Gaussian shape. Thus, the

beams with the best quality have Gaussian irradiance patterns and Gaussian beams

are almost always used in LADAR systems.
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Combining Eqs. 2.1 and 2.9 shows that

σxσsx ≥
1

4π
. (2.10)

This bound on the product of space and spatial frequency bandwidths is equivalent

to the bound on time and frequency that appears in literature on radar and signal

processing [51].

2.1.2 Fresnel Propagation of Gaussian Beams. The optical field after prop-

agating distance z is denoted U0(r, z). The field for a Gaussian beam at the aperture

(z = 0) is given by Eq. 8 of [3].

U0(r, 0) =

(
2P

πW 2
0

)1/2

exp

(
−1

2
αkr2

)
(2.11)

where

α =
2

kW 2
0

+
i

F0

. (2.12)

In Eq. 2.12, W0 is the beam size, F0 is the focus distance, and k= 2π/λ is the wave

number. The beam size (W0) is the e−1 radius of the magnitude of the field at the

aperture. In other words, it is the e−1 radius of |U0(r, 0)|. The power in this beam is

denoted P .

P =

2π∫

0

∞∫

0

|U0(r, 0)|2rdrdθ = 2π

∞∫

0

|U0(r, 0)|2rdr (2.13)

where the radial symmetry in the field has been exploited. The power in Eq. 2.13

is measured at an instant. In LADAR systems transmitting laser pulses, the power

varies with time.

The Fresnel propagation of the field from Eq. 2.11 is

U0(r, z) =

(
2P

πW 2
0

)1/2
1

1 + iαz
exp

[
ikz − αkr2

2(1 + iαz)

]
. (2.14)
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This is Eq. 24 of [3]. The irradiance after propagating distance z is

I0(r, z) (2.15)

=
2P/πW 2

0

(1− z/F0)
2 + (λz/πW 2

0 )
2 exp

[
− 2 (r/W0)

2

(1− z/F0)
2 + (λz/πW 2

0 )
2

]
.

When the beam is collimated (F0 →∞), the propagated irradiance is

I0(r, z)|F0→∞ =
2P/πW 2

0

1 + (λz/πW 2
0 )

2 exp

[
− 2 (r/W0)

2

1 + (λz/πW 2
0 )

2

]
. (2.16)

When the beam is at the focus distance (z = F0), the propagated irradiance is

I0(r, F0) =
2P

πW 2
0

(
πW 2

0

λF0

)2

exp

[
−2

(
πW0r

λF0

)2
]

=
2πPW 2

0

λ2F 2
0

exp

[
−2

(
πW0r

λF0

)2
]

(2.17)

2.1.3 Gaussian Beam Size. The beam size W0 is measured at the LADAR

system’s transmitter aperture. As the beam propagates, its size varies. The size as a

function of range is calculated from the field magnitude equation, which is the square

root of the beam’s irradiance. The Fresnel propagated field magnitude is

|U0(r, z)| (2.18)

=

[
2P/πW 2

0

(1− z/F0)
2 + (λz/πW 2

0 )
2

]1/2

exp

[
− (r/W0)

2

(1− z/F0)
2 + (λz/πW 2

0 )
2

]
.

The beam size at range z, which is denoted Wz, is

Wz = W0

[(
1− z

F0

)2

+

(
λz

πW 2
0

)2
]1/2

. (2.19)

This is the radius at which the field magnitude is below the peak magnitude by a

factor of e−1.
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The beam size at range z when the beam has been focused is

WF0 =
λF0

πW0

. (2.20)

When the beam is collimated (F0 → ∞), the beam size at range z is (see also Eq.

5.85 of [28])

Wz|F0→∞ = W0

[
1 +

(
λz

πW 2
0

)2
]1/2

. (2.21)

The equation for the propagated beam size Wz (Eq. 2.19) can be used to write

the field magnitude and irradiance equations in simpler forms. The field magnitude

from Eq. 2.18 can be written

|U0(r, z)| =
(

2P

πW 2
z

)1/2

exp

(
− r2

W 2
z

)
. (2.22)

The propagated irradiance from Eq. 2.17 can be expressed

I0(r, z) =
2P

πW 2
z

exp

(
−2

r2

W 2
z

)
. (2.23)

2.1.4 Beam Divergence Angle. In the far field, the beam’s size is approxi-

mately proportional to the distance of propagation. Because of this linear dependence,

the beam’s size is often measured in terms of the angle between the axis of propaga-

tion and the e−1 field magnitude. The TEM00 Gaussian beam divergence angle θd is

(Eq. 5.86 of [28])

θd =
λ

πW0

. (2.24)

The Gaussian beam divergence angle can be compared to the divergence an-

gle for a plane wave truncated by an aperture with diameter Da. The plane wave

divergence angle θp is (Eq. 5.87 of [28])

θp = 1.22
λ

Da

. (2.25)
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Figure 2.1: (a) Propagation of a 4 cm beam that’s focused at 2 km.
(b) Propagation of a 4 cm beam that is focused at infinity (collimated).

The scaling of 1.22 in the previous equation is the first zero of J1(πx) where J1 is the

modified Bessel function of the first kind of order one. (See Table 4.1 of [13].)

2.1.5 Propagation Examples. Examples of propagated TEM00 Gaussian

beams are shown in Fig. 2.1. In Fig. 2.1a, the beam is focused at 2 km. The beam size

is 4 cm and the wavelength is 1.6µm. Notice that the beam is narrower after 1 km of

propagation than at the 2 km focus distance. A beam focused at a particular distance

has the narrowest possible value at that distance. But it could be even narrower at a

shorter distance than the focus. In Fig. 2.1b, propagated collimated Gaussian beams

are shown. In the collimated case, the beam’s size increases monotonically with range.

The Gaussian beam size as a function of range is shown in Fig. 2.2a. Beams

focused at 2, 5, and 10 km are shown, along with a collimated beam. The divergence

angle from Eq. 2.24 is shown for comparison. Notice that the beam focused at short

range (2 km) begins to diverge faster than the collimated beam at longer ranges. If

the beams propagate far enough, any Gaussian beam not collimated will eventually

begin to diverge faster than the Eq. 2.24 divergence angle.
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Figure 2.2: (a) Beam divergence for Gaussian beams.
(b) Beam divergence for plane wave beams.

The plane wave divergence angle from Eq. 2.25 is shown in Fig. 2.2b. The

angle for 10, 15, and 20 cm apertures is illustrated. Note that the 15 cm plane

wave divergence angle is nearly equal to the Gaussian beam divergence angle for a

transmitted beam size of 4 cm.

2.1.6 Temporal Laser Pulse Shape. Derivation of the Cramer-Rao lower

bound on range precision requires a mathematical model of the received laser pulse’s

temporal shape. Several different LADAR pulse shape models are used in the litera-

ture. Both a Gaussian shape [22] and heavy-tailed (asymmetric) [15,45] models have

been previously employed. In this dissertation, parabolas and Gaussian shapes are

used to describe the temporal shape of the transmitted laser pulse.

The Gaussian model does not work well when it is assumed that the noise is

Poisson. In that case, CRLBs are very difficult to calculate. A very similar problem

was considered by Winick [55]. That author considered the problem of calculating

the CRLB on position of a Poisson-distributed Gaussian shape in two-dimensions. A

CRLB was presented, but the author did not show a closed-form solution. However,
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it is straightforward to calculate the range CRLB for a Gaussian pulse using the same

sort of numeric expressions that are in [4, 55].

A solution for the shape of a pulse created by a Q-switched laser is presented

by Siegman in [38]. However, that solution is expressed as an integral that must be

evaluated numerically. Cramer-Rao lower bound analysis on such a signal would be

difficult. Even if an exact solution for the shape of the transmitted laser pulse was

used, the reflection process can distort the shape of that pulse, causing the received

pulse to have a different shape. The truncated parabola used in this dissertation is

not meant to be an exact representation of the true received signal. Rather, it is an

adequate approximation of received pulse shape and it produces a relatively simple

range CRLB in the Poisson noise case.

The various laser pulse shape models each have advantages and disadvantages.

The asymmetric models from [15, 45] accurately simulate the relatively fast rise of a

laser pulse. However, those models can overestimate the amount of pulse energy in

the tail. The asymmetry also makes analytic analysis of range precision more difficult.

The parabolic shape generally models the fast rise of a real laser pulse better

than the Gaussian model. However, the Gaussian model approximates the tail of the

laser pulse better than the parabolic model. The parabolic model is truncated and

does not have the tail that is present in a laser pulse. But since only a small fraction

of the pulse energy is present in the tail of a real laser pulse, the inverted parabola is

a reasonable approximation.

2.2 LADAR Detectors and Signals

2.2.1 Photodetectors and their Output Signals. A portion of the propagated

field is reflected off the target. Some of the reflected field is intercepted by the LADAR

system’s receiver optics, which focus that field onto a photodetector. A LADAR’s

detector converts the received optical power to a photocurrent.
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The photocurrent is denoted i(t). It is a function of the optical field and the

detector’s responsivity.

i(t) =

∞∫

−∞

∞∫

−∞

Ad(x, y)<(x, y)|U0(x, y)|2dxdy (2.26)

where Ad(x, y), written as a function of spatial coordinates x and y, is the binary

detector area function. This function represents the detector’s active region. In this

case, the optical field U0(x, y) is evaluated in the detector plane.

The variable <(x, y) in Eq. 2.26 is detector responsivity. The responsivity is

given by [13]

<(x, y) =
Gqη(x, y)

hν
(2.27)

where G is the detector gain, q is the electron charge (1.602×10−19 Coulombs), η(x, y)

is the photodetector’s quantum efficiency, h is Planck’s constant (6.626×10−34 Joule-

seconds), and ν is the optical frequency of the laser. The units of responsivity are

electric charge per unit of energy (e.g., Coulombs per Joule), or equivalently, current

per power (e.g., Amps per Watt). The spatial coordinates are frequently dropped

from the responsivity and quantum efficiency terms because these values are often

nearly uniform over the photodetector.

Targets observed by imaging systems are usually extended. That is, they are

large compared to the size of the laser beam. When extended targets are observed,

none of the transmitted laser power misses the target. However, some laser power

is absorbed by the target materials. The materials illuminated by LADAR systems

are often assumed to be Lambertian. This means that reflected laser light scatters

equally in all directions.

The power received Pr(t) by a LADAR system illuminating an extended Lam-

bertian target can be approximated as [21,31]

Pr(t) =
ηsρAr

4R2
Pt (t− 2R/c) (2.28)
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where Pt(t) is the power transmitted at time t, ηs is the system efficiency, ρ is the

target’s reflectivity, Ar is the area of the receiver, R is the range to the target, and

c is the speed of light. The system efficiency ηs is the product of the various loss

factors such as atmospheric transmission and optical transmission. In a system using

detector arrays, the received power is divided between the pixels in the array.

2.2.2 LADAR Signal Model. The following model was used in “Flash light

detection and ranging precision limits for returns from single opaque surfaces via

Cramer-Rao bounds” by Cain, et al. [4] to represent the mean number of photoelec-

trons per sample I(tk, xn, ym) in an imaging LADAR system. The model describes

the received laser pulse as an upside-down parabola. This LADAR signal model is

I(tk, xn, ym) (2.29)

= G(xn, ym)

{
1− [Rrt(xn, ym)− tkc]

2

(cpw)2

}
rect

[
Rrt(xn, ym)− tkc

2cpw

]

+B(xn, ym) + qs(tk, xn, ym)

where gain term G(xn, ym) is the peak mean number of photoelectrons per sample

from the target, Rrt(xn, ym) is the round-trip range to the target, tk is the time at

which the k-th sample is collected, pw is the pulse width, c is the speed of light, and

B(xn, ym) represents a bias level on each pixel in the LADAR’s detector array.

The variables m and n in Eq. 2.29 are the spatial indices in the LADAR image.

These indices specify the coordinate of the detector in the receiver’s detector array.

They index xm and yn, which are the spatial coordinates. Since much analysis in

this dissertation (e.g., CRLB derivations) is done on only the data from one pixel at

a time, the spatial coordinates indexed by these variables are sometimes dropped in

equations. However, it has been noted that a large signal incident on one detector

can effect adjacent detectors in an imaging LADAR’s focal plane array [37]. In such

a case, it is not valid to ignore data from the other detectors in the array, and the

spatial coordinates must be included in any analysis.
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The bias term is the mean number of noise photoelectrons per sample observed

by the detectors in the LADAR system. It represents the mean number of noise

counts due to noise sources such as background light and dark current. The term

qs(tk, xn, ym) is a stochastic noise component in each voxel of the three-dimensional

image. Inclusion of this term allows the noise level to vary for different samples from

a particular pixel. The units of qs(tk, xn, ym) are photoelectrons per sample. The

stochastic noise term qs(tk, xn, ym) is sometimes dropped from this equation since the

gain and bias terms may accurately model the signal by themselves.

The rect(x) function in Eq. 2.29 is the standard rectangle function from the

optics and signal processing literature. It is defined in [13].

rect(x) =





1 when |x| < 1/2

1
2

when |x| = 1/2

0 when |x| > 1/2

. (2.30)

The parabolic pulse shape used in the signal model from Eq. 2.29 is illustrated

in Fig. 2.3. This illustration shows that the pulse width pw in the parabolic signal

model is the distance between the points that are three-quarters of the maximum pulse

height. The entire pulse width is actually 2pw. The bias illustrated in Fig. 2.3 is one

(B = 1) and the gain is three (G = 3). The round-trip range is ten meters (Rrt = 10

m). It has been assumed that the stochastic noise term is zero, i.e., qs(tk, xn, ym) = 0,

in this figure.

2.2.3 Photoelectron Probability Density Functions. The photocurrent is pro-

portional to the number of photoelectrons observed by the LADAR photodetector.

The observed number of photoelectrons is denoted D(tk, xn, ym). The process of con-

verting a photon to a photoelectron is called a photoevent. The number of photoevents

that occur in some time duration is called the number of photocounts. These terms

photoevent and photocounts are described in detail in Sec. 9.1 of Statistical Optics by

Goodman [12].
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Through much of this dissertation, it is assumed that the number of photocounts

D(tk, xn, ym) has a Poisson distribution with mean I(tk, xn, ym) given by Eq. 2.29.

It has been shown that the integrated irradiance of coherent light reflected off of

a diffuse surface actually has a negative binomial distribution (see Sec. A.2). The

number of photoelectrons observed by a LADAR system’s receiver D(tk, xn, ym) is

proportional to this integrated irradiance (see Sec. 9.2.3 of [12]). They are related by

the gain and the quantum efficiency of the detector (often a photodiode or PMT) in

the LADAR’s receiver. The negative binomial distribution is parameterized by the

mean number of photoelectrons and the diversity parameter M. If the mean number

of photoelectrons is fixed and the diversity M becomes large in the negative binomial

distribution, then that distribution converges to the Poisson distribution [12]. It has

also been shown that as the mean number of photoelectrons approaches zero, that

the negative binomial distribution is approximately equal to the Poisson distribution

(see Sec. A.3).

Typical direct detection LADAR systems have a relatively high diversity. Thus,

the Poisson distribution is often used as an accurate approximation to the true nega-

tive binomial distribution that describes the number of photoelectrons in the LADAR

signal. For example, the system discussed in [4] had a diversity of about nine hundred

(M ≈ 900). The Poisson distribution, used to model the number of photoelectrons

counted in some time interval, is

Prob [D(tk, xn, ym) = d(tk, xn, ym)] = I(tk,xn,ym)d(tk,xn,ym)

d(tk,xn,ym)!
e−I(tk,xn,ym)

where

d(tk, xn, ym) = 0, 1, 2, . . . .

. (2.31)

The variable d(tk, xn, ym) is a realization of photocurrent random variable D(tk, xn, ym).

Variable I(tk, xn, ym) is the mean value for each sample.

2.2.4 Single Detector LADAR Signal Model. At this point, the mean pho-

tocurrent Eq. 2.29 is simplified. First, it is assumed that only one pixel in the LADAR
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detector array is being analyzed. Thus, the spatial indexing coordinates (xm, yn) from

Eq. 2.29 have been dropped in order to simplify the notation. Second, it is assumed

that the stochastic noise term qs(tk, xn, ym) is zero.

The parabolic pulse LADAR signal model without spatial dependence is

I(tk) = G

[
1− (Rrt − tkc)

2

(cpw)2

]
rect

(
Rrt − tkc

2cpw

)
+ B. (2.32)

This equation is a simplification of the model from [4] (which is also shown in Eq. 2.29

of this dissertation). The more general model includes spatial dependence (denoted

by variables xn and ym) and a stochastic noise term qs(tk, xn, ym) for each voxel in

the three-dimensional image.

In this chapter, it is assumed that each signal received by the LADAR system

is statistically independent from all others. Therefore, the each pulse can be treated

individually for purposes for parameter estimation and CRLB derivations. The fact

that each pulse’s signal is independent justifies the dropping of the spatial variables

when going from Eq. 2.29 to Eq. 2.32.

The number of temporal samples recorded by the (m,n)-th detector is denoted

K. If it is further assumed that the samples are statistically independent of each

other, then the joint PDF of the photoelectrons observed at each sample is simply

the product of the K PDFs for each individual sample. The assumption of statistical

independence between samples comes from the fact that the photocurrent is assumed

to be a Poisson process. Poisson processes are memoryless. Therefore, any sample
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has no dependence on all previous samples. The joint PDF is

Prob [D(t1) = d(t1), D(t2) = d(t2), . . . , D(tK) = d(tK)]

= p [d(t1), d(t2), . . . , d(tK)]

=
K∏

k=1

I(tk)
d(tk)e−I(tk)

d(tk)!

=

exp

[
−

K∑
k=1

I(tk)

]
K∏

k=1

I(tk)
d(tk)

K∏
k=1

d(tk)!

(2.33)

where d(tk) is the observed realization of the Poisson process and I(tk) is the mean

number of photons from Eq. 2.32.

2.3 LADAR Range Precision

The precision of range estimates in LADAR systems has been studied in previous

publications. This precision is bounded using Cramer-Rao analysis. Derivation of the

CRLB requires a statistical model for the received signal. That model includes the

noise terms present in the received signal. Unknown parameters in the model, such

as amplitude of the received signal and range to target, must be estimated from the

noisy data. The model is used in the Cramer-Rao lower bound to determine precision

limits on unbiased estimates of the unknown parameters.

2.3.1 Cramer-Rao Lower Bounds. At this point, the Cramer-Rao lower

bounds for Eq. 2.32 are calculated using the distribution from Eq. 2.33. In the K

sample LADAR signal, there are three unknown parameters that can be estimated.

The round-trip range to target Rrt, the gain G, and the bias B are all unknown

parameters. The precision of estimates of the unknown parameters can be analyzed

using the Cramer-Rao lower bound. The CRLB is found by first evaluating the

Fisher information matrix (FIM). The Fisher information matrix J(Rrt, G, B) for
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this problem is

J(Rrt, G,B) = −




E
[

∂2l(Rrt,G,B)

∂R2
rt

]
E

[
∂2l(Rrt,G,B)

∂Rrt∂G

]
E

[
∂2l(Rrt,G,B)

∂Rrt∂B

]

E
[

∂2l(Rrt,G,B)
∂Rrt∂G

]
E

[
∂2l(Rrt,G,B)

∂G2

]
E

[
∂2l(Rrt,G,B)

∂G∂B

]

E
[

∂2l(Rrt,G,B)
∂Rrt∂B

]
E

[
∂2l(Rrt,G,B)

∂G∂B

]
E

[
∂2l(Rrt,G,B)

∂B2

]


 (2.34)

where l(Rrt, G, B) is the log-likelihood function.

The likelihood function, which is denoted L(Rrt, G,B), is closely related to the

PDF of the data. It is the PDF written as a function of the unknown parameters.

The PDF, on the other hand, is a function of the data realization. The likelihood

function derived from Eq. 2.33 is a function of the round-trip range, gain, and bias in

the signal. Specifically, the likelihood function associated with the distribution from

Eq. 2.31 is

L [Rrt, G, B|d(t1), d(t2), . . . , d(tK)] =

exp

[
−

K∑
k=1

I(tk)

]
K∏

k=1

I(tk)
d(tk)

K∏
k=1

d(tk)!

. (2.35)

The log-likelihood function, which is denoted l(Rrt, G, B), is simply the natural log-

arithm of the likelihood function. The log-likelihood function for Eq. 2.31 is

l [Rrt, G,B|d(t1), d(t2), . . . , d(tK)] (2.36)

= log {L [Rrt, G,B|d(t1), d(t2), . . . , d(tK)]}

= log





exp

[
−

K∑
k=1

I(tk)

]
K∏

k=1

I(tk)
d(tk)

K∏
k=1

d(tk)!





=
K∑

k=1

d(tk) log [I(tk)]−
K∑

k=1

I(tk)−
K∑

k=1

log [d(tk)!] .
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The second derivatives of the log-likelihood function with respect to unknown param-

eters Rrt, G, and B are

∂2l(Rrt, G, B)

∂R2
rt

(2.37)

= −
[

2G

(cpw)2

]2 K∑

k=1

[
(Rrt − tkc)

2 d(tk)

I2(tk)
+

d(tk)

I(tk)
− 1

]
rect

(
Rrt − tkc

2cpw

)
,

∂2l(Rrt, G, B)

∂Rrt∂G
(2.38)

=
2G

(cpw)2

K∑

k=1

(Rrt − tkc)

[
1− (Rrt − tkc)

2

(cpw)2

]
d(tk)

I2(tk)
rect

(
Rrt − tkc

2cpw

)
,

∂2l(Rrt, G, B)

∂Rrt∂B
=

2G

(cpw)2

K∑

k=1

(Rrt − tkc)
d(tk)

I2(tk)
rect

(
Rrt − tkc

2cpw

)
, (2.39)

∂2l(Rrt, G, B)

∂G2
= −

K∑

k=1

[
1− (Rrt − tkc)

2

(cpw)2

]2
d(tk)

I2(tk)
rect

(
Rrt − tkc

2cpw

)
, (2.40)

∂2l(Rrt, G, B)

∂G∂B
= −

K∑

k=1

[
1− (Rrt − tkc)

2

(cpw)2

]
d(tk)

I2(tk)
rect

(
Rrt − tkc

2cpw

)
, (2.41)

and
∂2l(Rrt, G, B)

∂B2
= −

K∑

k=1

d(tk)

I2(tk)
. (2.42)

The elements of the Fisher information matrix are the negative expectations of these

second derivatives

−E

[
∂2l(Rrt, G,B)

∂R2
rt

]
=

[
2G

(cpw)2

]2 K∑

k=1

(Rrt − tkc)
2 1

I(tk)
rect

(
Rrt − tkc

2cpw

)
, (2.43)
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−E

[
∂2l(Rrt, G, B)

∂Rrt∂G

]
(2.44)

= − 2G

(cpw)2

K∑

k=1

(Rrt − tkc)

[
1− (Rrt − tkc)

2

(cpw)2

]
1

I(tk)
rect

(
Rrt − tkc

2cpw

)
,

−E

[
∂2l(Rrt, G, B)

∂Rrt∂B

]
= − 2G

(cpw)2

K∑

k=1

(Rrt − tkc)
1

I(tk)
rect

(
Rrt − tkc

2cpw

)
, (2.45)

−E

[
∂2l(Rrt, G, B)

∂G2

]
=

K∑

k=1

[
1− (Rrt − tkc)

2

(cpw)2

]2
1

I(tk)
rect

(
Rrt − tkc

2cpw

)
, (2.46)

−E

[
∂2l(Rrt, G, B)

∂G∂B

]
=

K∑

k=1

[
1− (Rrt − tkc)

2

(cpw)2

]
1

I(tk)
rect

(
Rrt − tkc

2cpw

)
, (2.47)

and

−E

[
∂2l(Rrt, G,B)

∂B2

]
=

K∑

k=1

1

I(tk)
. (2.48)

The derivations of the previous equations made use of the fact that the mean of a

Poisson random variable D(tk) is I(tk). That is, E [D(tk)] = I(tk). Eqs. 2.43 - 2.48

were first derived in [4].

The functions being summed in Eqs. 2.43 - 2.48 are illustrated in Fig. 2.4.

The round-trip range, gain, and bias values used to create these plots are the same

as are used in Fig. 2.3. It is shown in Chapter III that the summations in these

equations can be approximated using integrals. The functions in Eqs. 2.44 and 2.45

have odd symmetry around the center of the pulse. Therefore, those equations are

approximately zero.

The duration of the pulse is 2pw. The sampling duration, which is denoted td,

is

td = K/fs = K∆t (2.49)

where fs is the sampling frequency. The sampling frequency is the reciprocal of the

time between samples in the system (fs = 1/∆t) where ∆t denotes the time between

samples.
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The pulse in Eq. 2.32 is centered at time tk = Rrt/c. Since we have assumed that

the entire pulse is sampled, it is required that pw < Rrt/c < td−pw. If this requirement

is not satisfied, then the pulse is not completely sampled and some received signal

energy is missed.

2.4 Gain Variation in APD Arrays

In Sec. 2.3, a model was presented to describe the received signal in the pho-

todetector array of an imaging LADAR. The model from Eq. 2.29 assumes that the

gain term G is constant across the entire detector array. That model also assumes

that the gain is fixed for each pixel over its range record. Fixed detector gain was

also assumed in [4].

However, recent research has demonstrated that there can be gain variations

in LADAR detector arrays [37]. Gain can vary for a particular detector within an

array over that detector’s sampling time. Gain can also fluctuate across an array of

photodetectors at any particular sample. These fluctuations in gain were observed in

the Advanced Scientific Concepts LADAR owned by AFRL Sensors Directorate. The

detector used in that system is an array of avalanche photodiodes.

An empirical model for the gain in an avalanche diode was developed by Miller

[29]. Miller’s model is

G =
1

1−
(

Vbias

Vbd

)p (2.50)

where Vbias is the bias voltage, Vbd is the breakdown voltage, and p is an empirical

constant used to model the device. Some imaging LADARs use detector arrays that

share a common voltage regulator, which is the component that sets the bias voltage

Vbias. Sharing the voltage regulator saves on weight and power in the system. However,

when a signal is received, the regulator’s bias voltage drifts. Fluctuations in the bias

voltage cause variations in the gain equation (Eq. 2.50). And if the same regulator is

used by all detectors in the system, then the gain will vary in all pixels.
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Figure 2.4: (a) The round-trip range second derivative. (b) The range-gain deriva-
tive. (c) The range-bias derivative. (d) The gain second derivative. (e) The gain-bias
derivative. (f) The bias second derivative.
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Methods for compensation of gain variation were proposed and tested in [37], but

further work was also recommended. In this dissertation, more LADAR data collected

with an ASC system is analyzed. The gain variation is observed and its effect on range

measurements is demonstrated. Different methods of gain equalization are proposed

and tested in an attempt to correct for the gain variation in the avalanche photodiode

array.

2.5 Overview of Dissertation

The research in this dissertation begins in Chapter III with a Poisson-distributed

signal model that simulates a laser pulse received by a shot-noise limited LADAR

system. This signal model was previously analyzed by Cain et al. in [4]. In this

dissertation, the Cramer-Rao lower bound analysis work from that paper is extended.

Numerical solutions for range, gain, and background level CRLBs were formerly pub-

lished in that paper. In this dissertation, new closed-form analytic expressions are

derived for those Cramer-Rao lower bounds.

The shot-noise limited signal model from [4] is also extended to cases where

there are multiple received signals. These cases simulate the signal in a LADAR

observing a target partially obscured by forest canopy. Earlier work with this signal

model assumed that the received pulse width was known. However, when a target has

depth that is significant compared to the laser pulse width, the received pulse width

is larger than the transmitted width. In this case, the known width assumption is not

realistic. In Chapter III, the effect of an unknown pulse width is analyzed and the

effect on signal parameter CRLBs is calculated.

In Chapter IV of this dissertation, the range CRLB for a Poisson-distributed

signal is compared to the CRLB for a signal mixed with Gaussian noise. The compar-

ison assumes the background Poisson and Gaussian noise variances are equal. Proof

that the Gaussian noise range CRLB is a lower bound for the Poisson noise CRLB is

presented. Also, the effect of using multiple pulses on range precision of a shot-noise

limited LADAR is studied. It is shown that for a laser capable of dividing a fixed
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amount of energy into multiple pulses, the best range precision is achieved when all

energy is transmitted in a single pulse. Equivalently, distributing a fixed amount of

energy into multiple pulses increases the range CRLB, which indicates that there is

a decrease in precision.

It is also noted in Chapter IV that there are cases where the effect of target

surface orientation on range precision can not be ignored. These cases usually involve

systems with modest aperture sizes (a few inches in diameter) and target ranges of at

least several kilometers. However, such scenarios are common for airborne LADAR

systems. If the target surface is tilted with respect to the LADAR line of sight,

then there is a drop in range precision. The drop in precision is quantified in this

dissertation.

In Chapter V, it is noted that detector arrays composed of avalanche photodi-

odes (APDs) are being used in current imaging LADAR systems. Current arrays have

tens of thousands of APDs. The compact size and high numbers of pixels makes the

use of APD arrays desirable in imaging LADARs. However, gain variation in APD

arrays can produce undesirable effects. Gain variation distorts the shape of received

signals and introduces bias into range measurements.

In Chapter V, methods of gain variation correction (gain equalization) are pro-

posed and tested. It is shown that background data collected by an APD array

can be used to decrease the gain variation and improve the range precision in three-

dimensional LADAR images.

2.6 Chapter Summary

Understanding of LADAR systems requires knowledge of several key subjects.

The propagation of laser light was described in Sec. 2.1 of this chapter. Photodetectors

are used to convert a received optical field to an electrical signal. That signal is

inevitably noisy. The stochastic models used to characterize the noisy signals were

covered in Sec. 2.2 of this chapter. Received LADAR signals are often used to calculate
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the range to a target. This process, and the limitations on range precision due to

noise, were covered in Sec. 2.3. It has been noted that the constant of proportionality

relating the mean energy in the optical field and the mean electrical signal (the gain)

produced by an avalanche photodiode can vary. This APD gain variation problem

was discussed in Sec. 2.4.

This dissertation covers several different topics associated with the problem of

range estimation using a LADAR system. These items were described in Sec. 2.5 of

this chapter.
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III. Poisson-Distributed LADAR Signal Models

The subject of this chapter is LADAR signal modeling using the Poisson distribution.

These models represent the signals detected by LADAR systems as series of statisti-

cally independent Poisson random variables. The validity of the Poisson assumption

is discussed in detail in Sec. 2.2.3. The mean values of these Poisson random vari-

ables are the sum of a fixed bias level and possibly a signal component. The bias

level represents the noise sources in the system such as background light entering

the LADAR’s receiver aperture and dark current in the present in the photodetector.

The signals are modeled as finite duration (truncated) parabolas. The parabolic pulse

shape model is not used universally in the literature, but is a reasonable approxima-

tion to the true shape of a laser pulse. Various laser pulse shape models used in the

literature are compared in Sec. 2.1.6. The parabolic model is used because it is simple

and reasonably realistic.

The LADAR signal models are parameterized by range to target, gain, bias, and

pulse width. In some cases, more than one range or gain term is present in the signal

model. When multiple parameters of the same type are used, it is to simulate the

signal observed when the LADAR transmits one pulse but observes received signals

from more than one target. It is usually assumed that the received laser pulse width

is known. However, received pulse width can be treated as an unknown parameter to

be estimated.

The LADAR signal models are used to derive parameter estimates and to cal-

culate the bounds on precision of those estimates. The use of established parameter

estimation techniques such as maximum likelihood estimation is discussed. The signal

models are also used to find the Cramer-Rao lower bounds for unbiased estimates of

unknown parameters.

Three different LADAR signal models are discussed in this chapter. The first

model considered is the single parabolic pulse model with known width. This model

was studied in a previous publication [4] and is discussed in Sec. 2.2.4. It is revisited
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in order to present analytic expressions for the Cramer-Rao lower bounds on the

parameter estimates in that model.

The second model in this chapter is a generalization of the parabolic pulse model

that includes obscuration. This obscured target model is used to approximate the

observed LADAR signal when the target of interest is partially occluded by clutter.

In military remote sensing scenarios, the obscurant is typically camouflage netting or

some sort of foliage. The obscuration is simulated by adding a second parabolic pulse

to the simulated signal with its own range and gain values.

The final model is equivalent to the single laser pulse parabolic signal model.

However, this version treats the pulse width as an unknown parameter that must be

estimated instead of a known constant. Estimation algorithms for the pulse width

are proposed. The effect of unknown pulse width on the Cramer-Rao lower bounds is

also discussed.

3.1 Parabolic Pulse LADAR Signal Model

All three LADAR signal models in this chapter are generalizations of the model

published by Cain, et al. [4] in “Flash light detection and ranging accuracy limits

for returns from single opaque surfaces via Cramer-Rao bounds.” The CRLBs for the

parabolic pulse model are derived in that paper. However, they are expressed in terms

of summations of various sampled functions.

Because parabolic pulse models are used extensively in this dissertation, it

proves useful to derive analytic approximations to the summations from [4]. These

analytic approximations are used to find simpler expressions for various Cramer-Rao

lower bounds. In this section, the original parabolic pulse model from [4] is revisited

in order to derive analytic CRLB expressions.
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In this dissertation, the round-trip range from Eq. 2.32 is replaced by range to

target R. Round-trip range Rrt is double the one-way range to the target.

Rrt = 2R. (3.1)

The parabolic pulse model in terms of range to target is

I(tk) = G

[
1−

(
tk − 2R/c

pw

)2
]

rect

(
tk − 2R/c

2pw

)
+ B. (3.2)

The pulse is sampled in its entirety as long as pw < 2R/c < td − pw.

The parabolic pulse model from Eq. 3.2 is equal to Eq. 2.32 with the substitu-

tion from Eq. 3.1. An example of the parabolic pulse model from Eq. 3.2 is shown

in Fig. 3.1. The signal shapes shown in Figs. 2.3 and 3.1 appear equal because the

range to target is the same in both. In Fig. 2.3, the round-trip range is Rrt = 10 m

and in Fig. 3.1, the range is R = 5 m.

3.1.1 Fisher Information Matrix. The Fisher information matrix is used to

calculate the Cramer-Rao lower bounds on unbiased estimates of signal parameters.

The unknown parameters in Eq. 3.2 are range, gain, and bias (denoted R, G, and

B). The FIM associated with the parabolic pulse model from Eq. 3.2 is

J(R, G,B) = −




E
[

∂2l(R,G,B)
∂R2

]
E

[
∂2l(R,G,B)

∂R∂G

]
E

[
∂2l(R,G,B)

∂R∂B

]

E
[

∂2l(R,G,B)
∂R∂G

]
E

[
∂2l(R,G,B)

∂G2

]
E

[
∂2l(R,G,B)

∂G∂B

]

E
[

∂2l(R,G,B)
∂R∂B

]
E

[
∂2l(R,G,B)

∂G∂B

]
E

[
∂2l(R,G,B)

∂B2

]


 (3.3)

The FIM elements are calculated from the expectations of the second derivatives of the

log-likelihood function l(R,G, B). The signal is modeled as a sequence of independent

Poisson random variables, each with mean I(tk). The log-likelihood function from (see
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Figure 3.1: Illustration of the parabolic pulse LADAR signal
model from Eq. 3.2. This signal model differs from the one
shown in Fig 2.3 because it is defined in terms of range to target
(R) rather than round-trip range (Rrt).
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Eqs. 2.35 and 2.36) for the parabolic pulse from Eq. 3.2 is

l(R, G,B) =
K∑

k=1

d(tk) log [I(tk)]−
K∑

k=1

I(tk)−
K∑

k=1

log [d(tk)!] . (3.4)

Derivatives of the log-likelihood function are needed to calculate the FIM. The

first derivatives of the log-likelihood function for the parabolic pulse signal model (Eq.

3.2) with respect to the unknown parameters are

∂l(R,G, B)

∂R
=

K∑

k=1

∂I(tk)

∂R

[
d(tk)

I(tk)
− 1

]
, (3.5)

∂l(R,G, B)

∂G
=

K∑

k=1

∂I(tk)

∂G

[
d(tk)

I(tk)
− 1

]
, (3.6)

and
∂l(R,G, B)

∂B
=

K∑

k=1

[
d(tk)

I(tk)
− 1

]
. (3.7)

Eq. 3.7 was evaluated using the fact that

∂I(tk)

∂B
= 1. (3.8)

For the CRLB to exist, the expectations of the first derivatives of the log-

likelihood function must be zero. This requirement is called the regularity condition

[23]. The fact that the mean of Poisson random variable D(tk) is I(tk) is used to find

these expectations.

E

[
D(tk)

I(tk)
− 1

]
=

E [D(tk)]

I(tk)
− 1 = 0. (3.9)

Eq. 3.9 can be used to show that the first derivatives of the log-likelihood (Eqs. 3.5

- 3.7) all have an expected value of zero. Thus, the regularity condition is satisfied.
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The second derivatives needed for the diagonal elements of the Fisher informa-

tion matrix are

∂2l(R,G, B)

∂R2
=

K∑

k=1

{
∂2I(tk)

∂R2

[
d(tk)

I(tk)
− 1

]
−

[
∂I(tk)

∂R

]2
d(tk)

I2(tk)

}
, (3.10)

∂2l(R,G, B)

∂G2
=

K∑

k=1

{
∂2I(tk)

∂G2

[
d(tk)

I(tk)
− 1

]
−

[
∂I(tk)

∂G

]2
d(tk)

I2(tk)

}
, (3.11)

and
∂2l(R,G, B)

∂B2
= −

K∑

k=1

d(tk)

I2(tk)
. (3.12)

The second derivatives needed for the off-diagonal elements of the FIM are

∂2l(R,G, B)

∂R∂G
=

K∑

k=1

{
∂2I(tk)

∂R∂G

[
d(tk)

I(tk)
− 1

]
− ∂I(tk)

∂R

∂I(tk)

∂G

d(tk)

I2(tk)

}
, (3.13)

∂2l(R, G, B)

∂R∂B
= −

K∑

k=1

∂I(tk)

∂R

d(tk)

I2(tk)
, (3.14)

and
∂2l(R,G, B)

∂G∂B
= −

K∑

k=1

∂I(tk)

∂G

d(tk)

I2(tk)
(3.15)

where Eq. 3.8 was used to evaluate Eqs. 3.14 and 3.15.

The expectations of the log-likelihood function derivatives must be calculated

to find the FIM. Eq. 3.9 is used to find the FIM element expectations. The FIM

diagonal elements are

−E

[
∂2l(R, G,B)

∂R2

]
=

K∑

k=1

1

I(tk)

[
∂I(tk)

∂R

]2

, (3.16)

−E

[
∂2l(R, G,B)

∂G2

]
=

K∑

k=1

1

I(tk)

[
∂I(tk)

∂G

]2

, (3.17)
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and

−E

[
∂2l(R, G,B)

∂B2

]
=

K∑

k=1

1

I(tk)
. (3.18)

The off-diagonal FIM elements are

−E

[
∂2l(R,G, B)

∂R∂G

]
=

K∑

k=1

1

I(tk)

∂I(tk)

∂R

∂I(tk)

∂G
, (3.19)

−E

[
∂2l(R,G, B)

∂R∂B

]
=

K∑

k=1

1

I(tk)

∂I(tk)

∂R
, (3.20)

and

−E

[
∂2l(R,G, B)

∂G∂B

]
=

K∑

k=1

1

I(tk)

∂I(tk)

∂G
. (3.21)

The derivatives of the parabolic pulse are needed to evaluate Eqs. 3.16 - 3.21.

The derivative of Eq. 3.2 with respect to range is

∂I(tk)

∂R
=

4G

cpw

(
tk − 2R/c

pw

)
rect

(
tk − 2R/c

2pw

)
. (3.22)

The derivative with respect to gain is

∂I(tk)

∂G
=

[
1−

(
tk − 2R/c

pw

)2
]

rect

(
tk − 2R/c

2pw

)
. (3.23)

In these two derivative equations (Eqs. 3.22 and 3.23), the effect of the discontinuity

in I(tk) due to the rectangle function has been ignored.

Using Eq. 3.22, the FIM element from Eq. 3.16 can be written

−E

[
∂2l(R,G, B)

∂R2

]
(3.24)

=
K∑

k=1

1

G

[
1−

(
tk−2R/c

pw

)2
]

+ B

[
4G

cpw

(
tk − 2R/c

pw

)]2

rect

(
tk − 2R/c

2pw

)
.
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The Fisher information matrix element in Eq. 3.24 includes a summation. Summa-

tions such as this one can be approximated using integrals. The integral approxima-

tion to Eq. 3.24 is

−E

[
∂2l(R,G, B)

∂R2

]
(3.25)

≈ fs

(
4G

cpw

)2
2R/c+pw∫

2R/c−pw

1

G

[
1−

(
t−2R/c

pw

)2
]

+ B

(
t− 2R/c

pw

)2

dt.

This approximation assumes that the data was sampled at rate fs. The integral in

Eq. 3.25 is evaluated using the following change of variable.

u =

√
G

B + G

t− 2R/c

pw

. (3.26)

Using this change of variable in the integral from Eq. 3.25 yields

−E

[
∂2l(R,G, B)

∂R2

]
(3.27)

≈ fs

(
4G

cpw

)2

√
G

B+G∫

−
√

G
B+G

1

G
(
1− B+G

G
u2

)
+ B

B + G

G
u2pw

√
B + G

G
du

=
16fsG

c2pw

√
B + G

G

√
G

B+G∫

−
√

G
B+G

u2

1− u2
du.

Eq. 2.147.5 of Table of Integrals, Series, and Products by Gradshteyn and Ryzhik [14]

is ∫
xm

1− x2
dx = − xm−1

m− 1
+

∫
xm−2

1− x2
dx. (3.28)

Letting m = 2 in the previous equation produces

∫
x2

1− x2
dx = −x +

∫
1

1− x2
dx. (3.29)
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Eq. 2.143.2 of [14] is ∫
1

1− x2
dx = atanh(x) (3.30)

if |x| < 1 where atanh(x) is the inverse hyperbolic tangent function. Combining Eqs.

3.25, 3.29, and 3.30 produces

−E

[
∂2l(R,G, B)

∂R2

]
≈ 32Gfs

c2pw

[√
B + G

G
atanh

(√
G

B + G

)
− 1

]
. (3.31)

The following variable a is defined to simplify the Fisher information matrix elements

and later CRLB equations.

a =

√
B + G

G
atanh

(√
G

B + G

)
. (3.32)

Using this variable allows Eq. 3.31 to be written

−E

[
∂2l(R,G, B)

∂R2

]
≈ 32Gfs

c2pw

(a− 1). (3.33)

This integral approximation for the FIM element was validated by comparing it to

an actual summation. The results are shown in Fig. 3.2a. There is good agreement

between the integral approximation and the numeric result.
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Figure 3.2: (a) The range second derivative. (b) The range-gain derivative. (c) The
range-bias derivative. (d) The gain second derivative. (e) The gain-bias derivative.
(f) The bias second derivative.
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Using Eqs. 3.22 and 3.23, the FIM element from Eq. 3.19 can be approximated

by an integral.

−E

[
∂2l(R, G,B)

∂R∂G

]
(3.34)

=
4G

cpw

K∑

k=1

(
tk−2R/c

pw

) [
1−

(
tk−2R/c

pw

)2
]

G

[
1−

(
tk−2R/c

pw

)2
]

+ B

rect

(
tk − 2R/c

2pw

)

≈ fs
4G

cpw

2R/c+pw∫

2R/c−pw

(
t−2R/c

pw

)[
1−

(
t−2R/c

pw

)2
]

G

[
1−

(
t−2R/c

pw

)2
]

+ B

dt

= fs
4G

cpw

1∫

−1

v (1− v2)

G (1− v2) + B
pwdv.

The following change of variable was used in the above equation.

v =
t− 2R/c

pw

. (3.35)

Inspection of the integrand of Eq. 3.34 shows that it is an odd function (i.e., f(x) =

−f(−x)). Since the integrand is odd and the range of integration is centered around

the origin, the integral is zero. Therefore, this FIM element is approximately zero.

−E

[
∂2l(R,G, B)

∂R∂G

]
≈ 0. (3.36)

This approximation was compared to a summation in Fig. 3.2b. The summation

was very close to zero, but not exactly zero. The numeric result is not exactly zero

because the samples are not aligned exactly with the pulse center. If they were, then

the summation would be exactly zero. However, the magnitude of the summation is

very small and can be accurately approximated by a zero.
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The FIM element from Eq. 3.20 is approximately

−E

[
∂2l(R,G, B)

∂R∂B

]
(3.37)

=
4G

cpw

K∑

k=1

1

G

[
1−

(
tk−2R/c

pw

)2
]

+ B

(
tk − 2R/c

pw

)
rect

(
tk − 2R/c

2pw

)

≈ fs
4G

cpw

2R/c+pw∫

2R/c−pw

1

G

[
1−

(
t−2R/c

pw

)2
]

+ B

(
t− 2R/c

pw

)
dt

= fs
4G

cpw

1∫

−1

v

G (1− v2) + B
pwdv.

where the change of variable from Eq. 3.35 is used. The integrand of Eq. 3.37 is an

odd function and the range of integration is centered around the origin. Thus, the

integral is zero and the FIM element is approximately zero.

−E

[
∂2l(R,G, B)

∂R∂B

]
≈ 0. (3.38)

The integrand being approximated is shown in Fig. 3.2c. In that figure, the approxi-

mation was compared to a summation. The summation result was small, but not as

small as in the previous case. The discrepancy is likely caused by the sharp disconti-

nuities in the function near the edges of the parabolic pulse. The other FIM element

with an integral approximation that is approximately zero (Eq. 3.36) is shown in Fig.

3.2b. In that case, the function did not have sharp discontinuities and the summation

was about 104 times smaller than the output in this case. However, the analytic ap-

proximation error is still small compared to the other terms in the Fisher information

matrix. Thus, the approximations are accurate and the CRLBs they generate are

precise.
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By using the change of variable from Eq. 3.26, the FIM element from Eq. 3.17

can be approximated by

−E

[
∂2l(R, G, B)

∂G2

]
(3.39)

=
K∑

k=1

1
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]2
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)
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(
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G
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)
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(
1− B + G

G
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)2
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√
B + G

G
du

=
pwfs√

G
√

B + G

√
G

B+G∫

−
√

G
B+G

1

1− u2
du

−2
B + G

G

pwfs√
G
√

B + G

√
G

B+G∫

−
√

G
B+G

u2

1− u2
du

+
(B + G)2

G2

pwfs√
G
√

B + G

√
G

B+G∫

−
√

G
B+G

u4

1− u2
du.

Eq. 3.39 is the sum of three integrals. The first and second integrals in this equation

can be evaluated using Eqs. 3.29 and 3.30. In order to evaluate the third integral in

Eq. 3.39, start by letting m = 4 in Eq. 3.28.

∫
x4

1− x2
dx = −x3

3
+

∫
x2

1− x2
dx = −x3

3
− x + atanh(x) (3.40)
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where |x| < 1 and Eq. 3.30 is used. The first integral from Eq. 3.39 is evaluated

using Eq. 3.30.

pwfs√
G
√

B + G

√
G

B+G∫

−
√

G
B+G

1

1− u2
du (3.41)

=
2pwfs√

G
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B + G
atanh

(√
G

B + G

)
.

The second integral from Eq. 3.39 is evaluated using Eqs. 3.29 and 3.30.

−2
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G
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G
√

B + G

√
G
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−
√

G
B+G

u2

1− u2
du (3.42)

=
2pwfs√

G
√

B + G

[
2
√

B + G√
G

− 2(B + G)

G
atanh

(√
G

B + G

)]
.

The third integral from Eq. 3.39 is evaluated using Eq. 3.40.
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G
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√
G
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−
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G
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atanh

(√
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)
− (B + G)3/2
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−
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3
√

G

]
.

Eqs. 3.41, 3.42, and 3.43 can be combined to create an analytic approximation for

the Fisher information matrix term from Eq. 3.17.

−E

[
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.
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Using the variable a, which was defined in Eq. 3.32, this can be written

−E

[
∂2l(R, G, B)

∂G2

]
≈ 2pwfs

G

[
2

3
− B

G

(
1− aB

B + G
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. (3.45)

This integral approximation is compared to a summation in Fig. 3.2d. The numeric

and analytic results are exactly the same.

The FIM element from Eq. 3.21 can be approximated with an integral.
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There are two integrals in Eq. 3.46. These integrals can be evaluated using Eqs. 3.28

and 3.29. Therefore, the FIM element from Eq. 3.21 is approximately

−E

[
∂2l(R,G, B)

∂G∂B

]
(3.47)

≈ 2pwfs

[
1

G
− B

G3/2
√

B + G
atanh

(√
G

B + G

)]

=
2pwfs

G

(
1− aB

B + G

)
.

where the variable a from Eq. 3.32 was used. It is shown in Fig. 3.2e that this result

is nearly equal to the summation over the actual function.

The final FIM element to be evaluated (Eq. 3.18) can be approximated with an

integral.

−E

[
∂2l(R,G, B)

∂B2

]
(3.48)

=
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]

rect
(

t−2R/c
2pw

)
+ B

dt.

This integral approximation differs from the integral approximations of all the other

FIM terms because the integrand is nonzero over the entire data collection region

(0 ≤ t ≤ td). This integral can be computed by splitting it into three different
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regions.
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where the change of variable from Eq. 3.26 is used. It can be shown using Eq. 3.30

that Eq. 3.49 is
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B
+

pwfs√
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Therefore, the FIM element from Eq. 3.18 can be approximated by the following

formula.

−E

[
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a
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where Eq. 3.32 was used. This integral approximation to the FIM term is compared

to the output of a summation in 3.2f. The results are nearly identical.

50



3.1.2 Cramer-Rao Lower Bounds. The Cramer-Rao lower bounds are the

lower limits on the variance of any unbiased estimate of an unknown parameter. The

CRLBs are obtained by inverting the Fisher information matrix. The FIM for the

parabolic pulse signal model from Eq. 3.2 is

J(R, G,B) ≈




JRR 0 0

0 JGG JGB

0 JGB JBB


 . (3.52)

There are matrix elements approximately equal to zero because Eqs. 3.36 and 3.38

are about zero. The JRR term in the Fisher information matrix is Eq. 3.33.

JRR =
32Gfs

pwc2
(a− 1). (3.53)

where a was defined in Eq. 3.32. The JGG term in the FIM is Eq. 3.45.

JGG =
2pwfs

G

[
2

3
− B

G

(
1− aB

B + G

)]
. (3.54)

The JGB term is Eq. 3.47.

JGB =
2pwfs

G

(
1− aB

B + G

)
. (3.55)

Finally, the JBB term is Eq. 3.51.

JBB = 2pwfs

(
td − 2pw

2pwB
+

a

B + G

)
=

2pwfs

B

[
td

2pw

−
(

1− aB

B + G

)]
. (3.56)

The Fisher information matrix (Eq. 3.52) for the parabolic pulse LADAR signal

model from Eq. 3.2 has a block diagonal form. The inverse of a block diagonal matrix

is 
 A 0

0 B



−1

=


 A−1 0

0 B−1


 . (3.57)
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Since the FIM (Eq. 3.52) for the parabolic LADAR pulse signal model from Eq. 3.2

is block diagonal, Eq. 3.57 can be used to find the FIM inverse.

J−1(R, G,B) ≈




1/JRR 0 0

0 JBB/d −JGB/d

0 −JGB/d JGG/d


 (3.58)

where d is the determinant of the 2× 2 matrix in the lower right corner of the 3× 3

FIM matrix in Eq. 3.52. The determinant of the 2× 2 matrix is

d =

∣∣∣∣∣∣


 JGG JGB

JGB JBB




∣∣∣∣∣∣
= JGGJBB − J2

GB. (3.59)

Eqs. 3.45, 3.47, and 3.51 are used to calculate this determinant.

d =
4p2

wf 2
s

BG

[
td

3pw

−
(

tdB

2pwG
+

2

3

)(
1− aB

B + G

)]
. (3.60)

The CRLBs for estimates of range, gain, and bias are the diagonal elements of

the inverse of the Fisher information matrix. The CRLB for range estimates is the

reciprocal of JRR. This variable is used in Eq. 3.53 to calculate the bound.

Var
[
R̂

]
≥ 1

JRR

=
pwc2

32Gfs(a− 1)
. (3.61)

The CRLB for estimates of the gain is JBB (Eq. 3.56) divided by the determinant d

from Eq. 3.60.
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d
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)
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−
(
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+ 2
3

) (
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) . (3.62)

52



Table 3.1: Parabolic Pulse Signal
Model CRLBs.

Parameter Cramer-Rao Lower Bounds

Range pwc2

32Gfs

[√
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G
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atanh

(√
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The bias estimate CRLB is JGG (Eq. 3.54) divided by the determinant d from Eq.

3.60.

Var
[
B̂

]
≥ JGG

d
=

B

2pwfs

2
3
− B

G

(
1− aB

B+G

)

td
3pw

−
(

tdB
2pwG

+ 2
3

) (
1− aB

B+G

) . (3.63)

The following term appears in the gain and bias CRLBs (Eqs. 3.62 and 3.63) and can

be expressed in terms of the hyperbolic arctangent function.

1− aB

B + G
= 1− B√

G
√

B + G
atanh

(√
G

B + G

)
(3.64)

The Cramer-Rao lower bounds for the parabolic pulse LADAR signal model from Eq.

3.2 are summarized in Table 3.1.

3.1.3 Maximum Likelihood Estimation of Parameters. Maximum likelihood

estimation is one of the most popular parameter estimation techniques. The MLEs

for the range, gain, and bias in the parabolic pulse signal model from Eq. 3.2 are

calculated from the joint PDF for the samples (Eq. 2.33).

The likelihood function is maximized with respect to the unknown values. Max-

imization of the likelihood function is equivalent to maximization of the log-likelihood

function from Eq. 3.4. Since the log-likelihood function is easier to work with with

respect to range, it is used to find the MLEs. The derivative of the log-likelihood
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function with respect to range is (see Eqs. 3.5 and 3.22)
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∂R
=

4G

cpw

K∑

k=1

d(tk)

G

[
1−

(
tk−2R/c

pw

)2
]

+ B

(
tk − 2R/c

pw

)
rect

(
tk − 2R/c

2pw

)

− 4G

cpw

K∑

k=1

(
tk − 2R/c

pw

)
rect

(
tk − 2R/c

2pw

)
. (3.65)

The second term has odd symmetry about the center of the rectangle function. There-

fore, it goes to zero. The MLE is found by setting Eq. 3.65 to zero. The range MLE

is the value of R̂ that satisfies the following equation.
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)
= 0. (3.66)

Evaluation of Eq. 3.66 requires knowledge of the gain and bias. In real LADAR data,

the gain and bias are usually unknowns. Thus, the range, gain, and bias usually have

to be estimated simultaneously in order to calculate the range MLE.

The derivative of the log-likelihood function with respect to gain is (see Eqs.

3.6 and 3.23)
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.
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By using the change of variable from Eq. 3.35, the second summation in Eq. 3.67

can be written

K∑

k=1

[
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(
tk − 2R/c
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)2
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rect
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)
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Therefore, the gain MLE is the value of Ĝ satisfying
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The derivative of the log-likelihood function with respect to bias is

∂l(R,G, B)
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pw

)2
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rect
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2pw

)
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Therefore, the MLE of the bias is the value B̂ that satisfies

K∑

k=1

d(tk)

G

[
1−

(
tk−2R/c

pw

)2
]

rect
(

tk−2R/c
2pw

)
+ B̂

= K. (3.71)

All three of the MLEs derived (Eqs. 3.66, 3.69, and 3.71) require knowledge of

the other unknown parameters in the model. In practice all three MLEs must be solved

simultaneously. Additionally, there is no analytic solution for any of these MLEs. All

must be solved using iterative numeric methods. Iterative numeric estimation of

multiple parameters is often complicated and can be time consuming. Therefore, in

Sec. 3.1.4 alternate methods of estimation are considered.
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3.1.4 Range Estimation Methods. It is noted in Sec. 3.1.3 that the maximum

likelihood estimates of range, gain, and bias in the parabolic pulse model are difficult

to calculate. Calculation is complicated because the MLEs must be evaluated using

iterative numeric methods implemented simultaneously on all three parameters. This

complexity leads to consideration of simpler parameter estimates.

It is proposed that range estimation can be done using a combination of matched

filtering and peak fitting. The problem of range estimation for a signal that has

been mixed with zero-mean white Gaussian noise was considered in Fundamentals

of Statistical Signal Processing: Estimation Theory by Kay [23]. It was determined

that for a signal mixed with zero-mean Gaussian noise, that the range MLE can be

calculated by filtering the noisy signal with a noiseless copy of the signal. The range

MLE is the range at which the filtered output is at its maximum.

Range estimation in LADAR systems differs from the zero-mean Gaussian noise

case because the received signal is Poisson-distributed and never has nonnegative

values. Also, while it is assumed that each sample in the received signal is statistically

independent from every other sample, the variance is changes from sample to sample.

In fact, the variance is equal to the mean value for Poisson noise.

The range estimate is based on the Gaussian noise MLE from [23]. The estimate

is the range at which the output of the data d(t), convolved with filter h(t), is at its

maximum. The range estimate R can be written

R̂ = arg max
R

h(t) ∗ d(t). (3.72)

Because the Poisson-distributed noise is not white, the matched filter is not

necessarily the optimal filter for range estimation. Thus, alternative filters are tested

in the range estimation process. Four different filters were tested in Eq. 3.72. In the

first case, the filter is equal to the shape of the parabolic pulse pp(t). That is,

h1(t) = pp(t) (3.73)
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where the pulse is

pp(t) =

[
1−

(
tk − 2R/c

pw

)2
]

rect

(
tk − 2R/c

2pw

)
. (3.74)

This is a true matched filter where h1(t) is equal to the noiseless pulse. The next filter

tested was the square root of the noiseless pulse. The reason for trying this variation

on the true matched filter is that in the Poisson noise case, the samples with the

highest mean also have the greatest variance. Using the square root of the noiseless

pulse will put slightly less weight on the highest variance samples than the standard

matched filter does. The filter is,

h2(t) = [pp(t)]
1/2. (3.75)

The third filter tested uses the true mean value of the received signal. Because the

noise (the bias) is not zero-mean, the bias value is added to the filter. This filter is

h3(t) = Gpp(t) + B. (3.76)

The final filter tested was the square root of the true mean value. The motivation

for using this filter is the same as for filter h2(t) (Eq. 3.75). That is, the square root

operation puts slightly less weight on the highest variance values in the received signal

than the filter without the square root (Eq. 3.76) does. This filter is,

h4(t) = [Gpp(t) + B]1/2. (3.77)

There is a fundamental difference between the first two and the last two filters.

The first two filters (Eqs. 3.73 and 3.75) do no require any knowledge of the unknown

parameters in the system. The second two filters (Eqs. 3.76 and 3.77) assumed exact

knowledge of the gain and bias in the system. In practice, the gain and bias may not be

known exactly and may need to be replaced with estimates in order to implement the
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second two filters. Filters that assume knowledge of system parameters that could be

unknowns are sometimes called clairvoyant filters [10]. Because the second two filters

assume knowledge of the gain and bias in the system, they are called clairvoyant.

The four filters were tested using Monte Carlo simulations. The results are

shown in Fig. 3.3. Simulated Poisson noise signals were generated. A simulated

ten nanosecond pulse (pw = 10 ns) was centered within a one hundred nanosecond

(td = 100 ns) sampling interval. This signal was sampled at a rate of one Gigahertz

(fs = 1 GHz). Therefore, there were one hundred samples in each simulated received

signal (K = 100). The bias in the signal was fixed at five (B = 5) and the gain

was varied from one-tenth to one thousand (0.1 ≤ G ≤ 1000). The Monte Carlo

simulation was run many times in order to obtain multiple range estimates for each

gain value simulated. The precision of the range estimate was measured by calculating

the sample mean over the set of range estimates for each of the four filters.

The simulated received signals were processed using each of the four filters (Eqs.

3.73 - 3.77). The simulated signal was convolved with each of the filters, then the

edges of the output were trimmed so that the width of the sampling interval was

not increased. The range estimate was obtained by finding the peak sample and

then doing a three-point parabolic fit to the peak output point and the two adjacent

points. The exact parabolic fit algorithm used was the one presented in Eqs. 1 and 2

of [20]. The parabolic fit was used to get precision better than a bin width from the

range estimate. If the range estimate had been set to the center of the peak bin, then

the precision could never be better than the standard deviation of a uniform random

variable over one bin width.

The sampling duration is td. The measured round-trip time trt is related to the

round-trip range Rrt by

Rrt = trtc (3.78)

where c is the speed of light. The variance of a uniform random variable is the width

of that random variable’s support squared divided by twelve. Therefore, the variance
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of a range estimate that is uniformly distributed over a sampling duration of td is

σ2
R =

t2dc
2

48
. (3.79)

Inspection of the results shown in Fig. 3.3 shows that none of the filters tested

achieved the Cramer-Rao lower bound. However, for gain values between about three

and one thousand, the best precision was at worst about double the CRLB. As the

gain values dropped below the level of the bias, the range precision decreased rapidly.

For gains around one and two, the range estimate standard deviation is nearly ten

times the CRLB. When the gain is low enough (less than about one), the range

estimate precision is equal to the precision of a uniform random estimate over the

search interval (see Eq. 3.79). A uniform random error is effectively the worst case

scenario. Therefore, the filtering operation is providing no benefit for gain values

below one.

The Ziv-Zakai lower bound (ZZLB) is sometimes used to characterize limits

on parameter precision. The ZZLB was originally derived in [57] and was improved

in [6]. In [24], it was applied to estimation of pulse time-of-flight. The ZZLB has the

advantage of being valid in the low signal-to-noise (SNR) regime. However, it is more

complicated to evaluate than the CRLB [24]. Also, the ZZLB is not as tight as the

CRLB at high SNRs [6]. Thus, it was not used in this dissertation.

The estimate variances in Fig. 3.3 drop below the variance predicted by the

CRLB because at very low gain values, the are biased. Unbiased parameter esti-

mates can not have variances lower than what is predicted by their Cramer-Rao lower

bounds. However, it is possible for a biased estimate to have a variance lower than

the CRLB.

The best filter overall is the square root filter (Eq. 3.75). However, the standard

matched filter (Eq. 3.73) did perform slightly better than the square root filter for a

small range of gain values. The standard matched filter worked the best for gains from

about three to ten. The clairvoyant filters (the filters that assumed exact knowledge of
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Figure 3.3: Illustration shows range precision produced by
four different filters. The Cramer-Rao lower bound is also
shown.

the gain and bias) did not work better than the standard matched filter and the square

root matched filter. In general, the precision of parameter estimation improves when

more of the other parameters are known. But in this case, knowledge of the gain and

bias did not help. However, it is possible that a different filter that incorporated the

gain and bias values in a different way could achieve performance closer to the Cramer-

Rao lower bound. The clairvoyant filters performed worse than their counterparts.

This performance convergence was expected since as G/B approaches infinity, the

filters themselves converge to the non-clairvoyant versions.

Several more Monte Carlo simulations of range estimation are shown in Fig. 3.4.

Since the results in Fig. 3.3 showed that the square root filter had the best overall

performance, it was the only filter used in these simulations. In these simulations,

the sampling duration was td = 100 ns and the sampling rate was fs = 1 GHz.
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Figure 3.4: (a) Range estimation with bias B = 5.
(b) Range estimation with pulse width pw = 10 ns.

In Fig. 3.4a, the bias is B = 5 and the plot is parametric in pulse width. The

narrowest pulse (pw = 5 ns) had the best performance over most of the gain values.

With all else being equal, short pulses are better than long pulses for range estimation

since the received signal energy is focused within a shorter duration. When a long

pulse is used, the energy is spread over a longer duration and it is more difficult to

obtain an precise measurement of the peak value (the range estimate). However, the

longest pulse (pw = 20 ns) shows performance closest to the CRLB and showed the

best performance at certain low gain values (below about five). It is possible that the

longer pulse is closer to the CRLB than the shorter pulses because the shorter pulses

have more energy at higher frequencies and are not being sampled quickly enough.

The Nyquist frequency (fn = fs/2) was 500 MHz in these simulations. The 5 ns pulse

has four times the bandwidth of the 20 ns pulse, so it is possible that the 20 ns pulse

is being sampled at an adequate rate while the 5 ns pulse is experiencing aliasing

when sampled.

The bandwidth of a parabolic pulse was derived in Appendix B. It is shown in

Fig. B.2 that only about two parts in ten thousand of the total energy is outside the

Nyquist frequency for the 5 ns pulse. The energy outside the Nyquist frequency is
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aliased and will interfere with parameter estimates. The fraction of parabolic pulse

energy aliased for the 10 and 20 ns pulses is nearly one-tenth, and one one-hundredth,

lower than for the 5 ns pulse, respectively. The lower amount of aliased energy is a

possible explanation for why the longer pulses were closer to the range estimate CRLB

in Fig. 3.4a.

In Fig. 3.4b, the pulse width is pw = 10 ns and the plot is parametric in bias.

It is not surprising that the best range estimate precision was observed when the bias

was lowest (B = 1). For bias B = 1, the range estimate was nearly at the CRLB for

gain values over about three. For the highest bias case (B = 10), the precision was

significantly over the CRLB until the gain was greater than about six. Once the gain

was over about one hundred, the range precision was roughly equal for all three bias

values simulated because at those levels, the bias was much smaller than the gain in

each case.

3.1.5 Gain and Bias Estimation. In Sec. 3.1.3, the maximum likelihood

estimates for gain (Eq. 3.69) and bias (Eq. 3.71) are derived. However, the MLEs for

both of these parameters are difficult to evaluate. In this section, simple clairvoyant

estimates of gain and bias are proposed and tested. The estimates are clairvoyant

because they assume knowledge of the range to the target. These clairvoyant estimates

are not useful with real data since they assume knowledge of a parameter that is

unknown (the range). The purpose of these estimates is to validate the Cramer-Rao

lower bound formulas derived in Sec. 3.1.2.

The bias estimate used throws out the points in the received data that contain

any part of the parabolic pulse. The estimator then averages the remaining points to

obtain the bias estimate. Mathematically, the bias estimate is

B̂ =

K∑
k=1

d(tk)
[
1− rect

(
tk−2R/c

2pw

)]

K∑
k=1

[
1− rect

(
t−k−2R/c

2pw

)] . (3.80)
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Figure 3.5: (a) Bias estimation with bias B = 5.
(b) Bias estimation with pulse width pw = 10 ns.

The same estimate was used in [4]. Eq. 3.80 is equal to Eq. 3 from that reference.

This estimator is simply an average of the data points that are separate from the

pulse. The rect(x) term in the numerator and denominator zero the points that are

part of the parabolic pulse in the received signal.

Monte Carlo simulations of gain estimation are shown in Fig. 3.6. As in the

range estimation simulations (Figs. 3.3, 3.4), the sampling duration is td = 100 ns

and the sampling rate is fs = 1 GHz. In Fig. 3.6a, the bias is fixed at B = 5 and the

plot is parametric in pulse width. In Fig. 3.6b, the pulse width is fixed at pw = 10

ns and the plot is parametric in bias. In both Fig. 3.6a and 3.6b, the precision of

the bias estimate (Eq. 3.80) meets the CRLB unless the pulse duration is long and

the gain is low. If the pulse duration is short, then very little data is omitted by the

rect(x) function in the estimator. If the gain is high, then the data in the pulse is of

little use for bias estimation regardless of the pulse duration.
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A relatively simple gain estimate can be derived by first examining the expec-

tation of the sum of the data points from the pulse.

E

[
K∑

k=1

D(tk)rect

(
tk − 2R/c

2pw

)]
(3.81)

=
K∑

k=1

{
G

[
1−

(
tk − 2R/c

pw

)2
]

+ B

}
rect

(
tk − 2R/c

2pw

)

≈ fs

2R/c+pw∫

2R/c−pw

{
G

[
1−

(
t− 2R/c

pw

)2
]

+ B

}
dt

= 2fspwB + fsGpw

1∫

−1

(
1− v2

)
dv

= 2fspw

(
B +

2

3
G

)

where the change of variable from Eq. 3.35 was used. Therefore, the following equa-

tion is an unbiased gain estimate.

Ĝ =
3

4fspw

[
K∑

k=1

d(tk)rect

(
tk − 2R/c

2pw

)]
− 3B̂

2
(3.82)

where the bias estimate from Eq. 3.80 was used. The rect(x) function in this estimate

omits the points that are outside the parabolic pulse. This estimator was tested using

Monte Carlo simulations and the results are shown in Fig. 3.6. In Fig. 3.6a, the

bias is fixed at B = 5 and the plot is parametric in pulse width. The precision of

the estimate improves as the pulse width increases since an increase in pulse width

provides more samples to use in the estimator. In Fig. 3.6b, the pulse width is fixed

at pw = 10 ns and the bias is varied. The precision of the gain estimator improves as

the bias drops since a decrease in bias decreases the variance in the samples used in

the estimator.

64



10
−1

10
0

10
1

10
2

10
3

10
0

10
1

Gain (G)

S
ta

nd
ar

d 
D

ev
ia

tio
n

Gain Estimation (B=5 f
s
=1GHz t

d
=0.1µs)

 

 

p
w
=5ns Sim

p
w
=10ns Sim

p
w
=20ns Sim

CRLB

(a)

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

Gain (G)

S
ta

nd
ar

d 
D

ev
ia

tio
n

Gain Estimation (p
w
=10ns f

s
=1GHz t

d
=0.1µs)

 

 

B=1 Sim
B=3 Sim
B=10 Sim
CRLB

(b)

Figure 3.6: (a) Gain estimation with bias B = 5.
(b) Gain estimation with pulse width pw = 10 ns.

3.2 Obscured Target LADAR Signal Model

The LADAR signal model published in [4] is a representation of a received signal

from a target in the open. However, imaging LADARs are often used to create images

of targets that are behind vegetation or beneath tree canopy [26,27]. In this section,

a new signal model is developed that includes the target and the obscuration. This

new model is used to derive estimators for parameters including the target range. The

model is also used to derive CRLBs for the signal parameters.

3.2.1 LADAR Signal Model with Obscuration. In order to develop efficient

obscured target detection algorithms, a signal model is needed that includes the ob-

scuration and the target. The model in [4] can be modified to include two returns,

one from the obscuration and one from the target behind the obscurant. There are

different range (R) and gain (G) values for both of the returns. As with the single

return model, the bias is assumed to be at a constant level over all samples. The
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following modification of the parabolic pulse model from Eq. 3.2 is proposed.

I(tk) = G1

[
1−

(
tk − 2R1/c

pw

)2
]

rect

(
tk − 2R1/c

2pw

)
(3.83)

+G2

[
1−

(
tk − 2R2/c

pw

)2
]

rect

(
tk − 2R2/c

2pw

)
+ B.

This equation is similar to the single return parabolic pulse model from Eq. 3.2.

However, it has separate gain and range values for the obscuration (G1 and R1) and

for the target (G2 and R2). It is assumed that R1 is the range to the object closer to

the sensor and that R2 is the range to the farther object (R1 < R2).

It is assumed that the two pulses do not overlap and that both pulses are

completely sampled. In order for the pulses to not overlap, it is required that R2−R1 >

pwc. The requirements that must be satisfied for the pulses to be completely sampled

are 2R1/c > pw and 2R2/c < td − pw. At the speed of light, every nanosecond of

pulse width corresponds to about one foot of distance. Pulses that are only a few

nanoseconds are able to resolve multiple targets that are separated by a few feet.

The obscured target signal model from Eq. 3.83 is illustrated in Fig. 3.7. As in

the original parabolic pulse signal model from Eq. 3.2, pw is the three-quarter width

of the maximum pulse height. The entire pulse width is 2pw. The bias illustrated

in Fig. 3.7 is one-half (B = 0.5). There are two signals. One represents the signal

received from the obscuration. The other signal is from the target. The obscuration

range and gain illustrated in Fig. 3.7 are R1 = 5 m and G1 = 2. The target range

and gain are R2 = 10 m and G2 = 0.25.
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3.2.2 Fisher Information Matrix Elements. The Fisher information matrix

for the variable pulse width model from Eq. 3.83 is

J(R1, R2, G1, G2, B) (3.84)

= −




E
[

∂2l
∂R2

1

]
E

[
∂2l

∂R1∂R2

]
E

[
∂2l

∂R1∂G1

]
E

[
∂2l

∂R1∂G2

]
E

[
∂2l

∂R1∂B

]

E
[

∂2l
∂R1∂R2

]
E

[
∂2l
∂R2

2

]
E

[
∂2l

∂R2∂G1

]
E

[
∂2l

∂R2∂G2

]
E

[
∂2l

∂R2∂B

]

E
[

∂2l
∂R1∂G1

]
E

[
∂2l

∂R2∂G1

]
E

[
∂2l
∂G2

1

]
E

[
∂2l

∂G1∂G2

]
E

[
∂2l

∂G1∂B

]

E
[

∂2l
∂R1∂G2

]
E

[
∂2l

∂R2∂G2

]
E

[
∂2l

∂G1∂G2

]
E

[
∂2l
∂G2

2

]
E

[
∂2l

∂G2∂B

]

E
[

∂2l
∂R1∂B

]
E

[
∂2l

∂R2∂B

]
E

[
∂2l

∂G1∂B

]
E

[
∂2l

∂G2∂B

]
E

[
∂2l
∂B2

]




.

The log-likelihood derivatives with respect to Ri and Gi are equal to zero outside

the range |t−2Ri/c| < pw (see Eqs. 3.22 and 3.23). Therefore, the second derivatives

from the FIM (Eq. 3.84) are zero for any pair of parameters that characterizes the

obscuration and the target. Thus, there are several FIM terms with expected value

zero.

E

[
∂2l

∂R1∂R2

]
≈ E

[
∂2l

∂R1∂G2

]
≈ E

[
∂2l

∂G1∂R2

]
≈ E

[
∂2l

∂G1∂G2

]
≈ 0. (3.85)

The range and gain second derivatives for the signal from the obscuration and target

will also be about zero as they were for the single parabolic pulse case (see Eq. 3.36).

E

[
∂2l

∂R1∂G1

]
≈ E

[
∂2l

∂R2∂G2

]
≈ 0. (3.86)

The range and bias second derivatives are also about zero (see Eq. 3.38).

E

[
∂2l

∂R1∂B

]
≈ E

[
∂2l

∂R2∂B

]
≈ 0. (3.87)

Therefore, the only nonzero off-diagonal terms in the Fisher information matrix are

the second derivative pairs corresponding to the two gain variables and the bias.
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The diagonal elements for range and gain are identical to the ones derived for

the parabolic pulse model in Sec. 3.1. The obscured target model FIM (Eq. 3.84) can

be populated using Eqs. 3.33 and 3.45. The range terms are

−E

[
∂2l

∂R2
i

]
≈ 32Gifs

pwc2

[√
B + Gi

Gi

atanh

(√
Gi

B + Gi

)
− 1

]

=
32Gifs

pwc2
(ai − 1) (3.88)

where

ai =

√
B + Gi

Gi

atanh

(√
Gi

B + Gi

)
. (3.89)

The gain terms are

−E

[
∂2l

∂G2
i

]
≈ 2pwfs

Gi

[
2

3
− B

Gi

(
1− aiB

B + Gi

)]
. (3.90)

The approximation to the FIM bias element is not the same as the one in the

parabolic pulse model because of the multiple pulses present in the received signal.

However, it is evaluated in the same way as was done in Eqs. 3.48 - 3.51. Combining

Eqs. 3.18 and 3.83 yields

−E

[
∂2l

∂B2

]
=

K∑

k=1

1

I(tk)

≈ fs
td − 4pw

B
(3.91)

+fs

2R1/c+pw∫

2R1/c−pw

dt

G1

[
1−

(
t−2R1/c

pw

)2
]

rect
(

t−2R1/c
2pw

)
+ B

+fs

2R2/c+pw∫

2R2/c−pw

dt

G2

[
1−

(
t−2R2/c

pw

)2
]

rect
(

t−2R2/c
2pw

)
+ B

.
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Through the change of variable from Eq. 3.26, this equation can be written

−E

[
∂2l

∂B2

]
≈ fs

td − 4pw

B
+

pwfs√
G1

√
B + G1

√
G1

B+G1∫

−
√

G1
B+G1

du

1− u2

+
pwfs√

G2

√
B + G2

√
G2

B+G2∫

−
√

G2
B+G2

du

1− u2
. (3.92)

The integrals in the previous equation are equivalent to the integral that appears in

Eq. 3.50. Using the result from that equation, the FIM term can be written

−E

[
∂2l

∂B2

]
≈ fs

td − 4pw

B
+

2pwfs√
G1

√
B + G1

atanh

(√
G1

B + G1

)

+
2pwfs√

G2

√
B + G2

atanh

(√
G2

B + G2

)

= 2pwfs

[
td − 4pw

2pwB
+

a1

B + G1

+
a2

B + G2

]
. (3.93)

This analytic approximation is compared to the output of a numeric integration in

Fig. 3.8b and the results are nearly identical.

The only nonzero off-diagonal FIM term is the one that corresponds to the gain

and the bias. This term is identical to the one from the parabolic pulse model. It is

(see Eq. 3.47)

−E

[
∂2l

∂Gi∂B

]
≈ 2pwfs

Gi

(
1− aiB

B + Gi

)
. (3.94)

3.2.3 Cramer-Rao Lower Bounds. The Cramer-Rao lower bounds are the

lower limits on the variance of any unbiased estimate of an unknown parameter. The

CRLBs are obtained by inverting the Fisher information matrix. The FIM for the
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parabolic pulse signal model from Eq. 3.83 is

J(R1, R2, G1, G2, B) ≈




JR1R1 0 0 0 0

0 JR2R2 0 0 0

0 0 JG1G1 0 JG1B

0 0 0 JG2G2 JG2B

0 0 JG1B JG2B JBB




. (3.95)

Several matrix elements approximately equal to zero because the FIM elements shown

in Eqs. 3.85, 3.86, and 3.87 are about zero. The nonzero elements of the approximate

FIM from Eq. 3.95 are

JRiRi
=

32Gifs

pwc2
(ai − 1), (3.96)

JGiGi
=

2pwfs

Gi

[
2

3
− B

Gi

(
1− aiB

B + Gi

)]
, (3.97)

JBB = 2pwfs

[
td − 4pw

2pwB
+

a1

B + G1

+
a2

B + G2

]
, (3.98)
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and

JGiB =
2pwfs

Gi

(
1− aiB

B + Gi

)
(3.99)

where the variable ai was defined in Eq. 3.89.

The Cramer-Rao lower bounds for the unknown parameters in the obscured

target signal model (Eq. 3.83) are the diagonal elements of the inverse of the matrix

in Eq. 3.95. The FIM is block diagonal, so it is inverted using Eq. 3.57. The

range CRLBs are the reciprocals of the corresponding FIM elements. The CRLB for

estimates of range is

Var
[
R̂i

]
≥ pwc2

32Gifs(ai − 1)
. (3.100)

The CRLBs for gain and bias are more complicated than the range CRLB since

there are off-diagonal elements that complicate the matrix inverse. The gain CRLBs

are

Var
[
Ĝ1

]
≥ JG2G2JBB − J2

G2B

JG1G1

(
JG2G2JBB − J2

G2B

)− JG2G2J
2
G1B

(3.101)

and

Var
[
Ĝ2

]
≥ JG1G1JBB − J2

G1B

JG2G2

(
JG1G1JBB − J2

G1B

)− JG1G1J
2
G2B

. (3.102)

Finally, the bias CRLB is

Var
[
B̂

]
≥ 1

JBB − J2
G1B/JG1G1 − J2

G2B/JG2G2

. (3.103)

The CRLBs for the obscured target LADAR signal model from Eq. 3.83 are

summarized in Tables 3.2 and 3.3. The actual CRLBs are shown in Table 3.3. The

Fisher information matrix elements needed to calculate those CRLBs are shown in

Table 3.2.

3.2.4 Parameter Estimation. Estimation of the five parameters in the ob-

scured target model from Eq. 3.83 is difficult. It is straightforward to express the

likelihood function associated with Eq. 3.83. However, there are no simple analytic
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Table 3.2: Obscured Target Model
Fisher Information Matrix Elements.

FIM Element Value

JG1G1

2pwfs

G1

{
2
3
− B

G1

[
1− B√

G1
√

B+G1
atanh

(√
G1

B+G1

)]}

JG2G2

2pwfs

G2

{
2
3
− B

G2

[
1− B√

G2
√

B+G2
atanh

(√
G2

B+G2

)]}

JG1B
2pwfs

G1

[
1− B√

G1
√

B+G1
atanh

(√
G1

B+G1

)]

JG2B
2pwfs

G2

[
1− B√

G2
√

B+G2
atanh

(√
G2

B+G2

)]

JBB 2pwfs

[
td−4pw

2pwB
+

atanh
(√

G1
B+G1

)
√

G1
√

B+G1
+

atanh
(√

G2
B+G2

)
√

G2
√

B+G2

]

Table 3.3: Obscured Target Model
Cramer-Rao Lower Bounds.

Parameter Cramer-Rao Lower Bounds

Range to near target pwc2

32G1fs

[√
B+G1

G1
atanh

(√
G1

B+G1

)
−1

]

Range to far target pwc2

32G2fs

[√
B+G2

G2
atanh

(√
G2

B+G2

)
−1

]

Gain for near target 1

JG1G1
−JG2G2

J2
G1B/(JG2G2

JBB−J2
G2B)

Gain for far target 1

JG2G2
−JG1G1

J2
G2B/(JG1G1

JBB−J2
G1B)

Bias 1
JBB−J2

G1B/JG1G1
−J2

G2B/JG2G2
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solutions that simultaneously maximize the unknowns in that likelihood function. A

numeric search algorithm such as a gradient descent based search would be necessary

to calculate the MLEs.

It is desirable to test the CRLBs from Sec. 3.2.3 using Monte Carlo methods.

Instead of relying on numeric methods, simple suboptimal estimators were used on

simulated data following the obscured target model. These estimators are similar to

the ones presented in Sec. 3.1.4 and Sec. 3.1.5, but are more complicated because the

received signal now contains two different signals.

Four different range estimator filters were tested using Monte Carlo simulations

in Sec. 3.1.4. The filter with the best overall performance was h2(t) (see Eq. 3.75).

This filter is used to estimate the range to the largest gain signal. The estimate is

R̂large = arg max
R

h2(t) ∗ d(t) (3.104)

where filter h2(t) is the square root of the parabolic pulse from the obscured target

model (Eq. 3.83). This filter is

h2(t) = [pp(t)]
1/2 =

[
1−

(
t− 2R/c

pw

)2
]1/2

rect

(
t− 2R/c

2pw

)
. (3.105)

The estimate above is the range to the peak gain signal. However, there are

two signals in the obscured target model. The range to the other signal is calculated

using the same filter as in Eq. 3.104. However, the large gain pulse centered at range

R̂large is removed from the data before the filter is employed. The range estimate for

the smaller gain pulse can be expressed

R̂small = arg max
R

h2(t) ∗
{

d(t)

[
1− rect

(
t− 2R̂large/c

2pw

)]}
. (3.106)

The obscured target signal illustrated in Fig. 3.7 shows gain being larger for

the closest pulse (G1 > G2). However, it was not assumed that that the closest
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pulse’s gain is always larger. Therefore, the range estimate to the closest pulse is the

minimum of the estimates from Eq. 3.104 and Eq. 3.106.

R̂1 = min
{

R̂large, R̂small

}
. (3.107)

The range estimate to the pulse that is farther away is

R̂2 = max
{

R̂large, R̂small

}
. (3.108)

As in Sec. 3.1.5, simple clairvoyant gain and bias estimates are used in order

to validate the CRLBs derived in Sec. 3.2.3. The estimates are clairvoyant because

they assume exact knowledge of the target ranges R1 and R2. The bias estimate is a

generalization of the one shown in Eq. 3.80. It is

B̂ =

K∑
k=1

d(tk)
[
1− rect

(
tk−2R1/c

2pw

)
− rect

(
tk−2R2/c

2pw

)]

K∑
k=1

[
1− rect

(
tk−2R1/c

2pw

)
− rect

(
tk−2R2/c

2pw

)] . (3.109)

This bias estimate is similar to the one in Eq. 3.80, but in this case, there are two

rectangle functions. Two rectangle functions are needed to remove the two signals in

the obscured target model.

The clairvoyant gain estimates are based on the one shown in Eq. 3.82. Like

the bias estimate from Eq. 3.109, they assume exact knowledge of the target ranges

R1 and R2. They are

Ĝ1 =
3

4fspw

[
K∑

k=1

d(tk)rect

(
tk − 2R1/c

2pw

)]
− 3B̂

2
(3.110)

and

Ĝ2 =
3

4fspw

[
K∑

k=1

d(tk)rect

(
tk − 2R2/c

2pw

)]
− 3B̂

2
. (3.111)
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3.2.5 Simulations. Range estimation for an obscured target was simulated

using Monte Carlo methods. Many realizations of Poisson-distributed signals with

mean values given by Eq. 3.83 were generated. Using the randomly generated data,

the ranges to the near and far targets were estimated using Eqs. 3.107 and 3.108.

These range estimate equations do not require knowledge of the gain or bias in the

data. Thus, they are not clairvoyant estimators. The results of the simulation are

shown in Fig. 3.9.

This obscured target range estimation simulation is similar to the range esti-

mation simulation from the previous section (Figs. 3.3 and 3.4). However, there

are some differences between the range estimation simulations in the different sec-

tions. As the gain drops, the range standard deviation in the simulation shown in

Fig. 3.9 settles to value that is less than the uniformly-distributed error from Eq.

3.79. This uniformly-distributed error is not achieved because the range estimation

equations (Eqs. 3.107 and 3.108) bias the estimates toward the beginning and end of

the interval, respectively. At high gain values, the CRLB is nearly achieved.

Monte Carlo simulations of gain estimation are shown in Fig. 3.10. In Fig.

3.10a, the gain of the first pulse (G1) is estimated while the gain of the second (G2)

is varied. These simulations, and the CRLBs illustrated in the figure, show that the

precision of estimates of one gain value are independent of the other gain value. In

Fig. 3.10b, the gain of the second pulse, G2, is estimated for different values of that

gain. As G2 increases, the variance of its estimate also increases. This occurs since

the data is Poisson-distributed and the variance increases with increases in gain or

bias. However, given a particular value of B, the CRLB only drops so far because the

variance of the bias remains to interfere with the precision of the estimate.

Monte Carlo simulations of bias estimation are illustrated in Fig. 3.11. In Fig.

3.11a, the gain of the second pulse, G2, is varied and the simulations are run for three

different bias values (B =1, 3, and 10). The bias estimate variance is dominated by

the actual bias level. The CRLB does show a slight dependence on the gain level.
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Figure 3.9: Precision of range estimate is shown. Cramer-Rao
lower bounds are also illustrated.
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Figure 3.10: (a) Estimation of G1 as G2 varies parametric in bias.
(b) Estimation of G2 as G2 varies parametric in bias.
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Figure 3.11: (a) Bias estimation with bias pw = 10 ns parametric in bias.
(b) Bias estimation with pulse width B = 3 parametric in pulse width.

However, the bias estimate used in this simulation, Eq. 3.109, omits laser pulse data.

Therefore, the sample variance of the bias estimates in Fig. 3.11a do not depend on

G2.

In Fig. 3.11b, bias estimation is simulated for different values of G2 and pulse

width (pw). The bias is fixed at B = 3 in all simulations. As in Fig. 3.11a, the CRLB

is a function of more than just the bias. In this case, it drops as pulse width decreases

because there is more background-only data from which to measure the bias. And as

with the Fig. 3.11a case, the CRLB varies with G2. The simulations, on the other

hand, do not use the laser pulse data and have roughly the same sample variance for

all levels of gain.

3.3 Variable Pulse Width LADAR Signals

The single parabolic pulse model from [4] (discussed in Sec. 3.1) and the ob-

scured target model from Sec. 3.2 assume that the pulse width in the received signal is

a known constant. This assumption is valid in some cases. The width of the transmit-

ted pulse in a LADAR system is almost always known to a high degree of precision.
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Therefore, if the reflection process does not alter the pulse width by a significant

amount, then the received pulse width is the same as the transmitted width.

There are scenarios where the reflection process does not make a significant

change to the pulse width. When the transmitted laser pulse hits a surface that is

perpendicular to the LADAR line of sight, the width of the received pulse is equal to

the width of the transmitted pulse. Depending on the transmitted pulse width and

the size of the beam after propagation, small perturbations from perpendicular in

surface orientation may not change the pulse length by a significant amount. When

the beam hits a surface that has depth in range, there is always an increase in the

width of the pulse that is received. But if the target’s range depth is small compared

to the length of the pulse, then the increase in received pulse width will be negligible.

While there are situations where the received laser pulse has the same width

as the transmitted pulse, there are also many real world scenarios where the received

LADAR signal is wider than that pulse that was transmitted. The laser pulse can hit

a flat surface that is not perpendicular to the line of sight. In that case, the received

pulse is stretched. Objects being imaged such as buildings, vehicles, and vegetation

usually have range depth that will increase the width of the received pulse. In general,

the amount of pulse width distortion increases with range since the width of a focused

laser beam increases with distance. The problem is also exacerbated as laser pulse

width decreases. Short pulses are desirable for good range precision, but are more

easily distorted by targets with range depth.

In this section, a single parabolic pulse model is used to simulate the received

signal. That finite duration parabola, plus a bias level used to simulate noise sources,

models the mean value of the received signal. As in previous sections, the received

signal is a sequence of statistically independent Poisson random variables. But in this

case, the pulse width is treated as an unknown parameter that must be estimated.

However, it is shown through Cramer-Rao lower bound analysis that when the pulse

width is unknown, that the range precision of the system does not necessarily decrease.
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3.3.1 Variable Pulse Width LADAR Signal Model. The signal model used

for the variable pulse width case is equal to the parabolic pulse model from Eq. 3.2.

The model is

I(tk) = G

[
1−

(
tk − 2R/c

pw

)2
]

rect

(
tk − 2R/c

2pw

)
+ B. (3.112)

Mathematically, this model is equivalent to the one presented in Sec. 3.1. But in this

case, the pulse width (pw) is an unknown that must be estimated from the data. The

unknown pulse width will increase the size of the Fisher information matrix.

3.3.2 Log-Likelihood Function and its Derivatives. Because the model in

Eq. 3.112 has an unknown parameter that is not present in previous models, the

CRLBs derived for those models can not be used. The Fisher information matrix for

this model contains elements that relate to the unknown pulse width pw.

The log-likelihood function for the variable pulse width LADAR signal model is

l(R,G, B, pw) =
K∑

k=1

d(tk) log [I(tk)]−
K∑

k=1

I(tk)−
K∑

k=1

log [d(tk)!] . (3.113)

Derivatives of the log-likelihood function are used to calculate the CRLBs. However,

many of the needed derivatives were already calculated in Sec. 3.1.

The first derivatives of the log-likelihood function with respect to range, gain,

and bias have already been computed. The derivative with respect to pulse width is

∂l(R,G, B, pw)

∂pw

=
K∑

k=1

∂I(tk)

∂pw

[
d(tk)

I(tk)
− 1

]
. (3.114)

The only second derivative diagonal element from the FIM that has not been com-

puted previously is

∂2l(R,G, B, pw)

∂p2
w

=
K∑

k=1

{
∂2I(tk)

∂p2
w

[
d(tk)

I(tk)
− 1

]
− d(tk)

I2(tk)

[
∂I(tk)

∂pw

]2
}

. (3.115)
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The off-diagonal elements of the FIM associated with pulse width are

∂2l(R,G, B, pw)

∂R∂pw

=
K∑

k=1

{
∂2I(tk)

∂R∂pw

[
d(tk)

I(tk)
− 1

]
− d(tk)

I2(tk)

∂I(tk)

∂R

∂I(tk)

∂pw

}
, (3.116)

∂2l(R,G, B, pw)

∂G∂pw

=
K∑

k=1

{
∂2I(tk)

∂G∂pw

[
d(tk)

I(tk)
− 1

]
− d(tk)

I2(tk)

∂I(tk)

∂G

∂I(tk)

∂pw

}
, (3.117)

and
∂2l(R, G,B, pw)

∂B∂pw

= −
K∑

k=1

d(tk)

I2(tk)

∂I(tk)

∂pw

. (3.118)

The derivatives of Eq. 3.112 with respect to pulse width is needed to calculate

the Fisher information matrix elements for the variable pulse width model. This

derivative is
∂I(tk)

∂pw

=
2G

p3
w

(tk − 2R/c)2 rect

(
tk − 2R/c

2pw

)
. (3.119)

The elements of the Fisher information matrix are the negatives of the expec-

tations of the second derivatives of the log-likelihood function. Many of these have

already been calculated in Sec. 3.1. The FIM terms that are needed for the variable

width model are

−E

[
∂2l(R, G,B, pw)

∂p2
w

]
=

K∑

k=1

1

I(tk)

[
∂I(tk)

∂pw

]2

, (3.120)

−E

[
∂2l(R, G, B, pw)

∂R∂pw

]
=

K∑

k=1

1

I(tk)

∂I(tk)

∂R

∂I(tk)

∂pw

, (3.121)

−E

[
∂2l(R, G, B, pw)

∂G∂pw

]
=

K∑

k=1

1

I(tk)

∂I(tk)

∂G

∂I(tk)

∂pw

, (3.122)

and

−E

[
∂2l(R,G, B, pw)

∂B∂pw

]
=

K∑

k=1

1

I(tk)

∂I(tk)

∂pw

. (3.123)
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3.3.3 Fisher Information Matrix. The Fisher information matrix for the

variable pulse width model from Eq. 3.112 is

J(R, G,B, pw) (3.124)

= −




E
[

∂2l(R,G,B,pw)
∂R2

]
E

[
∂2l(R,G,B,pw)

∂R∂G

]
E

[
∂2l(R,G,B,pw)

∂R∂B

]
E

[
∂2l(R,G,B,pw)

∂R∂pw

]

E
[

∂2l(R,G,B,pw)
∂R∂G

]
E

[
∂2l(R,G,B,pw)

∂G2

]
E

[
∂2l(R,G,B,pw)

∂G∂B

]
E

[
∂2l(R,G,B,pw)

∂G∂pw

]

E
[

∂2l(R,G,B,pw)
∂R∂B

]
E

[
∂2l(R,G,B,pw)

∂G∂B

]
E

[
∂2l(R,G,B,pw)

∂B2

]
E

[
∂2l(R,G,B,pw)

∂B∂pw

]

E
[

∂2l(R,G,B,pw)
∂R∂pw

]
E

[
∂2l(R,G,B,pw)

∂G∂pw

]
E

[
∂2l(R,G,B,pw)

∂B∂pw

]
E

[
∂2l(R,G,B,pw)

∂p2
w

]




.

First, the diagonal elements from the FIM are evaluated. The range, gain, and

bias were already derived in Sec. 3.1.

−E

[
∂2l(R, G, B, pw)

∂R2

]
≈ 32Gfs

pwc2
(a− 1). (3.125)

−E

[
∂2l(R, G, B, pw)

∂G2

]
≈ 2pwfs

G

[
2

3
− B

G

(
1− aB

B + G

)]
. (3.126)

−E

[
∂2l(R,G, B, pw)

∂B2

]
≈ 2pwfs

(
td − 2pw

2pwB
+

a

B + G

)
. (3.127)

The final FIM diagonal element is the one associated with pulse width. Eqs. 3.120

and 3.119 are combined to obtain the following integral approximation.

−E

[
∂2l(R,G, B, pw)

∂p2
w

]
≈ 4fs

pw

(B + G)3/2

√
G

√
G

B+G∫

−
√

G
B+G

u4

1− u2
du. (3.128)
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where the change of variable from Eq. 3.26 was used. This equation can be evaluated

using the integral from Eq. 3.40.

−E

[
∂2l(R, G, B, pw)

∂p2
w

]
(3.129)

≈ 4fs

pw

(B + G)3/2

√
G

[
−2

3

(
G

B + G

)3/2

− 2

√
G

B + G
+ 2atanh

(√
G

B + G

)]

=
8fs

pw

[
(B + G)(a− 1)− G

3

]

where a is defined in Eq. 3.32. This analytic approximation is compared to a sum-

mation in Fig. 3.12a. Both numbers are large and they are almost identical.

As in previous cases, odd symmetry causes several FIM elements to be ap-

proximately zero. Inspection of the first derivative equations shows that the range

derivative is odd about the pulse center, but that all other derivatives are even about

the pulse center. When the terms are multiplied, range and all others produce odd

functions that are about zero after integration. Therefore,

E

[
∂2l(R, G,B, pw)

∂R∂G

]
≈ E

[
∂2l(R,G, B, pw)

∂R∂B

]
≈ E

[
∂2l(R, G,B, pw)

∂R∂pw

]
≈ 0. (3.130)

The odd symmetry of the function associated with range and pulse width is illustrated

in Fig. 3.12b. The functions for the other two terms were present in previous signal

models and are illustrated in Fig. 2.4. This range and pulse width function was

summed. The numeric result is small (0.06), but not exactly zero since the sampling

was not aligned exactly with the pulse center.

The off-diagonal FIM element relating gain and bias was evaluated earlier (see

Eq. 3.47).

−E

[
∂2l(R, G, B, pw)

∂G∂B

]
≈ 2pwfs

G

(
1− aB

B + G

)
. (3.131)

The FIM element relating gain and pulse width must be calculated. Eqs. 3.23, 3.119,

and 3.122 can be combined with the change of variable from Eq. 3.26 to produce the
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Figure 3.12: (a) The pulse width second derivative. (b) The range-width derivative.
(c) The gain-width derivative. (d) The bias-width derivative.
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following integral approximation,

−E

[
∂2l(R, G,B, pw)

∂G∂pw

]
(3.132)

≈ 2fs

√
B + G

G




√
G

B+G∫

−
√

G
B+G

u2

1− u2
du− B + G

G

√
G

B+G∫

−
√

G
B+G

u4

1− u2
du


 .

Using Eqs. 3.29 and 3.40, the approximation becomes

−E

[
∂2l(R, G, B, pw)

∂G∂pw

]
≈ 4fs

[
1

3
− B

G
(a− 1)

]
. (3.133)

This approximation is compared to a numeric integration in Fig. 3.12c. The results are

nearly equal. The final FIM term in the variable pulse width model is a combination

of Eqs. 3.123 and 3.119.

−E

[
∂2l(R, G,B, pw)

∂B∂pw

]
(3.134)

≈ 2Gfs

pw

2R/c+pw∫

2R/c−pw

1

G

[
1−

(
t−2R/c

pw

)2
]

+ B

(
t− 2R/c

pw

)2

dt.

This integral is proportional to the one that was evaluated to find the range diagonal

element of the Fisher information matrix (Eq. 3.25). Therefore,

−E

[
∂2l(R,G, B, pw)

∂B∂pw

]
(3.135)

≈ 2Gfs

pw

1

fs

(cpw

4G

)2
(
−E

[
∂2l(R,G, B, pw)

∂R2

])

= 4fs(a− 1)

where Eq. 3.88 was used. This approximation is compared to a numeric integration

in Fig. 3.12d. The results are equal.

85



3.3.4 Cramer-Rao Lower Bounds. Using the results from Sec. 3.3.3, the

Fisher information matrix can be written

J(R,G, B, pw) ≈




JRR 0 0

0 JGG JGB JGpw

0 JGB JBB JBpw

0 JGpw JBpw Jpwpw




. (3.136)

This is a block diagonal matrix. It can be inverted using Eq. 3.57. The Cramer-Rao

lower bound for range is the reciprocal of the upper-left element of Eq. 3.136.

Var
[
R̂

]
≥ pwc2

32Gfs(a− 1)
. (3.137)

The range CRLB is identical to the one derived for the original parabolic pulse model

(Eq. 3.61) in spite of the fact that pulse width was known in that model but is

unknown in this case. However, range estimation is more difficult when the width is

unknown.

The non-zero 3 × 3 sub-matrix in the FIM makes the CRLBs for gain, bias,

and pulse width complicated. Instead of presenting complicated expressions for those

CRLBs, they are listed in terms of Fisher information matrix elements. All three

CRLBs calculations use the determinant of the sub-matrix from Eq. 3.136.

∣∣∣∣∣∣∣∣∣




JGG JGB JGpw

JGB JBB JBpw

JGpw JBpw Jpwpw




∣∣∣∣∣∣∣∣∣
(3.138)

= JGGJBBJpwpw + 2JGBJGpwJBpw − JGGJ2
Bpw

− JBBJ2
Gpw

− JpwpwJ2
GB.
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Using this result, the CRLBs are

Var
[
Ĝ

]
(3.139)

≥ JBBJpwpw − J2
Bpw

JGGJBBJpwpw + 2JGBJGpwJBpw − JGGJ2
Bpw

− JBBJ2
Gpw

− JpwpwJ2
GB

=
1

JGG +
(
2JGBJGpwJBpw − JBBJ2

Gpw
− JpwpwJ2

GB

)
/
(
JBBJpwpw − J2

Bpw

) ,

Var
[
B̂

]
(3.140)

≥ 1

JBB +
(
2JGBJGpwJBpw − JGGJ2

Bpw
− JpwpwJ2

GB

)
/
(
JGGJpwpw − J2

Gpw

) ,

and

Var [p̂w] (3.141)

≥ 1

Jpwpw +
(
2JGBJGpwJBpw − JGGJ2

Bpw
− JBBJ2

Gpw

)
/ (JGGJBB − J2

GB)
.

The Fisher information matrix elements for the variable pulse width model from

Eq. 3.112 are summarized in Table 3.4. The CRLBs, written in terms of the FIM

elements are shown in Table 3.5.

3.3.5 Simulations. Estimates of range, gain, and bias have been discussed

and tested in Secs. 3.1 and 3.2. Though the range CRLB is the same for all three signal

models, the actual process of range estimation differs depending on the model. In this

section, estimation of range and pulse width are simulated. Parameter estimation for

the variable pulse width model from Eq. 3.112 is difficult because there are four

unknown parameters that must be estimated. A relatively complicated algorithm

to estimate multiple signal parameters is derived in Sec. 5.2.2 and tested on real

LADAR data. In this section, a simpler clairvoyant pulse width estimation algorithm

is developed for the purpose of validating the width CRLB. The process of range

estimation is also simulated and compared to the range CRLB.
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Table 3.4: Variable Width Model
Fisher Information Matrix Elements.

FIM Element Value

JGG
2pwfs

G

[
2
3
− B

G

(
1− aB

B+G

)]

JBB 2pwfs

(
td−2pw

2pwB
+ a

B+G

)

Jpwpw

8fs

pw

[
(B + G)(a− 1)− G

3

]

JGB
2pwfs

G

(
1− aB

B+G

)

JGpw 4fs

[
1
3
− B

G
(a− 1)

]

JBpw 4fs(a− 1)

Table 3.5: Variable Width Model
Cramer-Rao Lower Bounds.

Parameter Cramer-Rao Lower Bounds

Range pwc2

32Gfs(a−1)

Gain 1

JGG+
2JGBJGpw

JBpw
−JBBJ2

Gpw
−Jpwpw J2

GB

JBBJpwpw−J2
Bpw

Bias 1

JBB+
2JGBJGpw

JBpw
−JGGJ2

Bpw
−Jpwpw J2

GB

JGGJpwpw−J2
Gpw

Pulse Width 1

Jpwpw+
2JGBJGpw

JBpw
−JGGJ2

Bpw
−JBBJ2

Gpw
JGGJBB−J2

GB
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Figure 3.13: Range estimation using a clairvoyant (known
received pulse width) filter and a filter with a fixed 10 ns filter.

The range estimation simulations from Secs. 3.1 and 3.2 assumed that the pulse

width in the received signal is known. In practice, the width may be unknown. The

simulation in Fig. 3.13 shows the precision of range estimation with knowledge of the

received pulse width (clairvoyant) and without knowledge of the pulse width.

In the simulations in Fig. 3.13, the range estimation method from Sec. 3.1.4 was

used. Pulse widths between 10 and 20 ns were simulated. In the clairvoyant case, the

width was known during estimation. In the other case, the pulse width used by the

filter was fixed at 10 ns regardless of actual pulse width. The results show that using

the wrong pulse width in the filter will decrease the precision of range estimates.

The problem of pulse width estimation is now addressed. The Gauss-Newton

method of parameter estimation is described in [23]. This process assumes knowledge

of the probability distribution of the data. It requires an initial estimate of the

unknown parameter. That initial estimate is updated through multiple iterations
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until it converges to the parameter estimate. The iteration is a function of the data’s

log-likelihood function.

The unknown signal parameter is denoted θ. The initial estimate is θ̂0. The

Gauss-Newton iterative estimate is

θ̂n = θ̂n−1 −
[

∂2l(θ̂n−1)

∂θ2

]−1
∂l(θ̂n−1)

∂θ
. (3.142)

The Gauss-Newton algorithm must be initialized with a coarse estimate of the

pulse width. A clairvoyant width estimate, that is an estimate that assumes knowledge

of the gain, range, and bias of the signal, can be derived using the expectation of the

sum of the data. The expectation of the sum of the data is

E

[
K∑

k=1

d(tk)

]
=

K∑

k=1

I(tk) (3.143)

≈ fs

Rrt/c−pw∫

Rrt/c−pw

{
G

[
1−

(
t− 2R/c

pw

)2
]

rect

(
t− 2R/c

2pw

)
+ B

}
dt

= fstdB + fsG

2R/c+pw∫

2R/c−pw

[
1−

(
t− 2R/c

pw

)2
]

dt

= fstdB + fsG

pw∫

−pw

(
1− u2

p2
w

)
dt

= fstdB +
4

3
fsGpw

where the change of variable u = tc − Rrt was used. Thus, the following equation is

an unbiased pulse width estimate.

p̂w =
3

4fsG

[
K∑

k=1

d(tk)− fstdB

]
. (3.144)
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This becomes the initial estimate for the Gauss-Newton iteration.

θ̂0 =
3

4fsG

[
K∑

k=1

d(tk)− fstdB

]
. (3.145)

The Gauss-Newton iteration is derived using the log-likelihood function asso-

ciated with the model from Eq. 3.112. The first and second derivatives of the log-

likelihood with respect to pulse width were already computed. They are shown in

Eqs. 3.114 and 3.115. The derivatives of the mean photocurrent with respect to pulse

width are
∂I(tk)

∂pw

=
2G

p3
w

(tk − 2R/c)2 rect

(
t− 2R/c

2pw

)
(3.146)

and
∂2I(tk)

∂p2
w

= −6G

p4
w

(tk − 2R/c)2 rect

(
t− 2R/c

2pw

)
= − 3

pw

∂I(tk)

∂pw

. (3.147)

Therefore, the terms from the Gauss-Newton iteration (Eq. 3.142) are

∂(R, G, B, pw)

∂pw

=
2G

p3
w

K∑

k=1

(tk − 2R/c)2 rect

(
tk − 2R/c

2pw

)[
d(tk)

I(tk)
− 1

]
(3.148)

and

∂2(R, G,B, pw)

∂p2
w

=
K∑

k=1

∂I(tk)

∂pw

{
3

pw

[
1− d(tk)

I(tk)

]
− ∂I(tk)

∂pw

d(tk)

I2(tk)

}
. (3.149)

When evaluating Eqs. 3.148 and 3.149, the current pulse width estimate is used to

calculate the mean photocurrent I(tk). These two equations are used to compute the

Gauss-Newton iteration from Eq. 3.142. The iteration is done repeatedly until the

pulse width estimate converges to a stable value.

The Gauss-Newton iteration for pulse width estimation was simulated using

Monte Carlo methods. Many realizations of Poisson-distributed signals were gener-

ated for different gain, bias, and pulse width values. The algorithm was initialized

91



10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pulse Width (ns)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(n
s)

Pulse Width Est. (B=3 f
s
=2GHz t

d
=0.1µs R=10m)

 

 

G=10 Sim
G=15 Sim
G=20 Sim
CRLB
Clairvoyant CRLB

(a)

10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Pulse Width (ns)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(n
s)

Pulse Width Est. (G=30 f
s
=2GHz t

d
=0.1µs R=10m)

 

 

B=2 Sim
B=5 Sim
B=10 Sim
CRLB
Clairvoyant CRLB

(b)

Figure 3.14: (a) Pulse width estimation as width and gain vary. (b) Pulse width
estimation as width and bias vary.

using Eq. 3.145. Twenty iterations of the algorithm were implemented per realization

because tests showed that it consistently converged after that number.

The results of the Monte Carlo simulations are shown in Fig. 3.14. In Fig.

3.14a, the bias is fixed and different values of gain are simulated. In Fig. 3.14b, the

gain is constant and the bias is varied. Pulse width values between 10 and 25 ns are

tested.

Two different CRLBs are shown in Fig. 3.14. The solid lines describe the CRLB

from Eq. 3.141. This CRLB does not assume that the other signals parameters

(range, gain, and bias) are known. The simulations, on the other hand, assumed that

those parameters were known. The simulations used that information to improve the

precision of the pulse width estimate. Because the clairvoyant pulse width estimate

knew the gain and bias, that estimate was more precise than predicted by the CRLB

from Eq. 3.141.

The second CRLB shown in Fig. 3.14 is the clairvoyant pulse width estimate

CRLB. This bound assumes knowledge of the signal’s gain and bias. It is lower

than the CRLB from Eq. 3.141. That CRLB assumes that the gain and bias must

be estimated from the data, and therefore, will not be as precise as the clairvoyant
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estimate that knows the gain and bias. The clairvoyant CRLB is

Var [p̂w]clairvoyant ≥
1

Jpwpw

=
pw

8fs [(B + G)(a− 1)−G/3]
. (3.150)

This CRLB has an interesting characteristic. This bound increases as the pulse width

increases. Equivalently, the CRLB is increasing as the mean pulse energy increases.

In most cases, an increase in pulse energy implies an improvement in the precision of

signal parameter estimates. But in this case, if the pulse energy increase is due to an

increase in pulse width while the gain is fixed, the pulse energy estimate becomes less

precise.

The clairvoyant pulse width CRLB from Eq. 3.150 is always less than or equal

to the pulse width CRLB from Eq. 3.141.

Var [p̂w] ≥ Var [p̂w]clairvoyant . (3.151)

This is because the CRLB for any parameter is always greater than or equal to the

reciprocal of its Fisher information matrix element. That is,

Var [p̂w] ≥ 1

Jpwpw

. (3.152)

See Appendix C for proof of this property. Thus the clairvoyant CRLB from Eq.

3.150 is a lower bound for the variance of unbiased pulse width estimates. However,

it is not as tight as the CRLB from Eq. 3.141.

The simulated clairvoyant estimates shown in Fig. 3.14 of pulse width are

less precise than the clairvoyant estimate CRLB says they could be. Gauss-Newton

estimates are generally not efficient [54]. That is, Gauss-Newton estimates generally

have a variance greater than the Cramer-Rao lower bound. However, the simulated

clairvoyant estimates have variance lower than the CRLB from Eq. 3.141. That

CRLB assumes the estimator does not know the gain and bias and is higher than the

clairvoyant bound from Eq. 3.150.

93



3.4 Chapter Summary

In this chapter, three different models for Poisson-distributed LADAR signals

were presented. The process of parameter estimation was discussed for each of these

models. Cramer-Rao lower bounds were derived for all parameters present in these

models such as range to target, gain, and bias.

In Sec. 3.1, a LADAR signal model that describes a laser pulse as a truncated

parabolic shape was discussed. It was shown that a relatively compact analytic ex-

pression could be derived for that model’s range CRLB. In Sec. 3.2, a model with

two different LADAR signals was discussed. This model is used to describe the signal

observed when a target is partially obscured by forest canopy or camouflage netting.

It was shown that the presence of the second signal did not decrease the range CRLB

to the target. Finally, in Sec. 3.3, the effect of unknown pulse width was examined. It

was shown that lack of knowledge of the pulse width did not affect the range CRLB.
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IV. Range Precision of LADAR Systems

The topic of this chapter is the precision of range estimates made by LADAR systems.

In the previous chapter, it was assumed that the noise in a LADAR signal follows

the Poisson distribution and that the shape of a received laser pulse was described

by a truncated parabola. That model is discussed in this chapter, but other methods

of signal modeling are also used. In some cases, the noise in the LADAR system

is assumed to have a Gaussian distribution. The shape of the laser pulse can be

modeled using functions other than the truncated parabola. In this chapter, the use

of alternative pulse shape models is discussed.

In Sec. 4.1, the Poisson-distributed parabolic pulse model from Chapters II

and III is employed to simulate shot-noise limited LADAR signals. The precision of

range estimates made with shot-noise limited systems is discussed. The effect of pulse

averaging is explored and the results are compared to systems with signals that have

white Gaussian, rather than Poisson noise.

In Sec. 4.2, the effect of target surface orientation on range precision is quan-

tified. It is shown that for typical LADAR systems this effect is only significant for

targets that are many kilometers away. In order to simplify the analytics involved in

this problem, the laser pulse is assumed to have a Gaussian shape and the noise is

modeled as a white Gaussian process. Cramer-Rao lower bounds are calculated for

range precision given a tilted target surface.

4.1 Target Range Estimation

A Cramer-Rao lower bound for range estimate variance was derived in Chapter

III. Methods of range estimation were also developed and tested in that chapter.

It was noted that for shot-noise limited (Poisson distributed) data, the maximum

likelihood estimate could not be solved analytically. However, it was also shown

that a combination of matched filtering and peak fitting produced reasonably precise

range estimates in the sense that they were close to the CRLB. However, it was also

demonstrated when the matched filter was replaced by a filter equal to the square
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root of the laser pulse shape, the range precision improved in most cases. Range

estimates produced by the square-root filter nearly achieved the CRLB when the

signal amplitude was large compared to the background level (see Fig. 3.3).

In this section, the Poisson noise range estimation CRLB and simulation results

are compared to range estimation for a signal mixed with additive white Gaussian

noise (AWGN). It is shown that the Gaussian-distributed signal produces range esti-

mates that are more precise than can be obtained from a Poisson-distributed signal

with equal background noise variance and mean signal energy. This is proved through

simulation and by comparing the Cramer-Rao lower bounds for these signals.

4.1.1 Comparison to Gaussian-Noise Signals. Noise in radar and commu-

nication systems is often assumed to have a Gaussian distribution. Gaussian noise

has also been used to model LADAR signals [9, 31]. Gaussian noise models are com-

mon in the communication and signal processing literature and are well-understood.

For purposes of comparison, the Poisson noise range CRLB derived in Chapter III

is compared to a Gaussian noise range CRLB that is derived in this section. The

comparison uses the parabolic pulse signal model from Eq. 3.112 for both Poisson

and Gaussian noise.

The signal model is

I(tk) = G

[
1−

(
tk − 2R/c

pw

)2
]

rect

(
tk − 2R/c

2pw

)
+ B. (4.1)

It is assumed that Gaussian-distributed samples dg(tk) have been collected. The mean

value of these samples is the mean photocurrent I(tk). The variance of the samples

is B since that is the variance of the background in the Poisson-distributed case.

Dg(tk) ∼ N [I(tk), B] . (4.2)
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As in the Poisson case, it is assumed that all samples are statistically independent of

each other. Note that in this case, it is possible for the signal to have negative values.

The range estimate CRLB for a signal mixed with AWGN was derived in Fun-

damentals of Statistical Signal Processing: Estimation Theory by Kay [23].

Var
[
R̂g

]
≥ Bc2

4fs

td∫
0

[
dI(t)

dt

]2

dt

(4.3)

where R̂g is any unbiased range estimate. This Gaussian-noise model CRLB derived

in [23] was calculated assuming that, in the absence of signal, the noise is zero-mean.

It is assumed here that there is a non-zero background mean of B. However, the

Gaussian-noise range CRLB is unaffected by the presence of a bias (the background

non-zero mean) in the data. For more detail on why the Gaussian-noise range CRLB

is not dependent on bias, see [16].

The integral in Eq. 4.3 is

td∫

0

[
dI(t)

dt

]2

dt =

2R/c+pw∫

2R/c−pw

[
−2G

p2
w

(t− 2R/c)

]2

dt =
4G2

p4
w

pw∫

−pw

v2dv =
8G2

3pw

(4.4)

where the change of variable v = t − 2R/c was used. Therefore, the Gaussian-noise

range CRLB is

Var
[
R̂g

]
≥ 3Bc2pw

32G2fs

. (4.5)

For the purpose of comparison, a bound on the Poisson-noise range CRLB (Eq.

3.137) is desired. That CRLB is (see Eqs. 3.137 and 3.32)

Var
[
R̂

]
≥ c2pw

32Gfs

[√
B+G

G
atanh

(√
G

B+G

)
− 1

] . (4.6)

The bound will be used to compare this CRLB to the Gaussian-noise CRLB from Eq.

4.5.
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Inverse hyperbolic tangent can be written as an infinite series [1].

atanh(x) =
∞∑

n=0

x2n+1

2n + 1
(4.7)

where |x| < 1. If atanh(x) is divided by x, then one is subtracted, the geometric

series can be used to find an upper bound. Consider the following series expansion.

atanh(x)

x
− 1 =

∞∑
n=1

x2n

2n + 1
=

1

3

∞∑
n=1

3x2n

2n + 1
. (4.8)

Using the fact that
3x2n

2n + 1
< x2n ∀ n > 1, (4.9)

Eq. 4.8 can be written

atanh(x)

x
− 1 <

1

3

∞∑
n=1

x2n =
x2

3

∞∑
n=0

x2n =
x2

3 (1− x2)
. (4.10)

Therefore, the term from the denominator of the Poisson-noise CRLB (Eq. 4.6)

is bounded by √
B + G

G
atanh

(√
G

B + G

)
− 1 <

G

3B
. (4.11)

This implies that the Poisson-distribution CRLB is bounded by

c2pw

32Gfs

[√
B+G

G
atanh

(√
G

B+G

)
− 1

] >
3Bc2pw

32G2fs

. (4.12)

This lower bound on the Poisson-distribution CRLB is equal to the Gaussian-noise

CRLB from Eq. 4.5. If the CRLB can be achieved, then the variances of the estimators

are related by

Var
[
R̂

]
> Var

[
R̂g

]
. (4.13)
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Figure 4.1: (a) Background is B = 10 and pulse width varies.
(b) Pulse width is pw = 10 ns and background varies.

The CRLB is sometimes used to design LADAR systems. Eq. 4.12 shows that

the Gaussian-noise CRLB is always less than the Poisson signal CRLB. The Poisson

CRLB is therefore a more realistic representation of the range precision of a shot noise

limited LADAR. Because the Gaussian CRLB is always less than the Poisson CRLB,

Eq. 4.5 is a lower bound for shot noise limited range precision. However, the Poisson

CRLB (Eq. 4.6) is a tighter bound on the range precision limit of a shot noise limited

LADAR system. That is, real unbiased range estimates will have variances closer to

the Poisson CRLB than to the Gaussian CRLB.

4.1.2 Simulations. Monte Carlo simulations of range estimation were com-

pleted and compared to the Poisson and Gaussian CRLBs. The results are shown in

Fig. 4.1. In the simulations, a pw = 10 ns parabolic pulse was sampled at frequency

fs = 1 GHz. One hundred samples were simulated (K = 100), so the sampling dura-

tion was td = 100 ns where td = K/fs. The bias level in the simulation was B = 10.

This value (B) is also the variance of the background samples in the Poisson and

Gaussian distribution cases.
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The pulse amplitude (G) was varied from 10−1 to 103. For each pulse amplitude,

10,000 Poisson and 10,000 Gaussian signal realizations were generated. The mean

value of these signals was the parabolic pulse from Eq. 4.1. Each of the signal

realizations was match filtered. The simulated range estimates were calculated using

three-point parabolic fits to the peaks of the match filter outputs. The parabolic fit

equations used are shown in [20].

In Fig. 4.1, the CRLBs from Eqs. 4.5 and 4.6 are compared to the sample

variances produced by the Monte Carlo simulations. At pulse amplitudes greater

than the bias level (G > B), the bounds are tight for the Poisson and Gaussian

distribution cases. As the pulse amplitude drops below the bias level, the simulation

sample variances begin to deviate from the CRLBs. At very low signal amplitudes

(G << B), the range estimation algorithm is reporting a random variable that is

uniformly distributed over the sampling interval. In uniform distribution case, the

range variance is Eq. 3.79.

At very low signal amplitudes, the sample variance is less than the CRLB.

Cramer-Rao lower bounds are only valid for unbiased estimators. In the very low

amplitude case, the range estimate is biased. Its mean value is near the center of

the sampling interval regardless of the laser pulse’s true position. It is this bias that

allows the estimator’s variance to surpass the bound. But in this case, the estimator’s

mean squared error (variance plus bias squared) can be very high. The fact that

sample variance is below the CRLB should obviously not be mistaken for efficient

performance.

The bias in low amplitude range estimates is illustrated in Fig. 4.2. The bias is

shown using Monte Carlo simulations where one-hundred sample LADAR signals are

simulated. A parabolic pulse is centered at sample 70 and the bias level is B = 10. In

Fig. 4.2a, the gain is one (G = 1). The pulse is visible, but as the gain is so low that

the distribution is nearly uniform over the sampling interval. The range estimates

are biased toward the center of the sampling interval. The average range estimate is
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Figure 4.2: (a) Histogram of range estimates with gain G = 1.
(b) Range estimates histogram with gain G = 3.

56.9. In Fig. 4.2b, the range gain has increased to three (G = 3). Outliers are visible

throughout the sampling interval. However outliers are rare and do little to bias the

range estimate. The average estimate of 67.7 is close to the true value.

4.1.3 Multiple Pulses and Range Precision. Range estimates from multiple

LADAR signals can be combined to improve precision. Multiple range estimates could

be averaged, or signals could be accumulated before one range estimate is computed.

Regardless of the method of processing, (e.g. averaging of estimates or accumulation

then estimation), the Cramer-Rao lower bound on range precision is valid for any

unbiased range estimate.

Given N statistically independent signals, the variance CRLB for any parameter

estimate decreases by a factor of N [5]. In that sense, having multiple pulses helps

range precision. However, this assumes that the laser has transmitted N -times more

energy than was transmitted in a single pulse.

If the amount of laser energy is fixed, but can be divided equally into N pulses,

then the CRLB varies with N . In a photon counting system, mean pulse energy is

proportional to the mean photocount gain G (see Eqs. 2.26 and 2.27). The range
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CRLB, given that a total (accumulated) amplitude of G is divided equally into N

pulses is

Var
[̂̄R

]
≥ c2pw

32Gfs

[√
G+BN

G
atanh

(√
G

G+BN

)
− 1

] (4.14)

where ̂̄R denotes any unbiased range estimate obtained from N Poisson-distributed

pulses, each with amplitude G/N .

In order to compare this CRLB to the single pulse CRLB from Eq. 4.6, the

infinite series for inverse hyperbolic tangent (see Eq. 4.10) is used.

√
G + BN

G
atanh

(√
G

G + BN

)
− 1 =

∞∑
n=1

1

2n + 1

(
G

G + BN

)n

. (4.15)

Gain G and background B are always positive. Therefore,

G

G + BN
<

G

B + G
∀ N > 1. (4.16)

This inequality implies that

∞∑
n=1

1

2n + 1

(
G

G + BN

)n

<

∞∑
n=1

1

2n + 1

(
G

G + B

)n

. (4.17)

Because the number of pulses N is a positive integer,

√
G + BN

G
atanh

(√
G

G + BN

)
− 1 ≤

√
B + G

G
atanh

(√
G

B + G

)
− 1 (4.18)

with equality if and only if N = 1. This equation means that the CRLBs from Eq.

4.6 and 4.14 are related by

c2pw

32Gfs

[√
G+BN

G
atanh

(√
G

G+BN

)
− 1

] (4.19)

≥ c2pw

32Gfs

[√
B+G

G
atanh

(√
G

B+G

)
− 1

] .
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If range estimators can be found that achieve the Cramer-Rao lower bound, then the

CRLB for a single Poisson-distributed laser pulse range measurement R̂ and a range

measurement made from a set of N Poisson-distributed pulses ̂̄R are related by

Var
[̂̄R

]
≥ Var

[
R̂

]
(4.20)

with equality if and only if N = 1.

Eq. 4.20 proves that for a fixed total laser energy and Poisson-distributed

signals, the range precision is maximized when all energy is transmitted in a single

pulse. It is interesting to compare this fact to Poisson-distributed signal detection

results from Gatt and Henderson [9]. In that paper, it was shown that for a fixed

total energy, the detectability of Poisson signals is maximized by transmitting all

energy in a single pulse. Thus, there is a relationship between the range precision and

the detectability of a Poisson-distributed signal.

In [35], the CRLB for position estimates of a Gaussian pulse in Poisson noise

was calculated. In that paper, it was assumed that there was no background noise

(B = 0). The result in Eq. 4.20 stands in contrast to the zero background noise result

(Eq. 18 of [35]). That CRLB is inversely proportional to amplitude. Thus, the range

precision is independent of the number of averages in the zero-background noise case

when the total laser energy is fixed.

The CRLB for a shot-noise limited system which divides a fixed total energy

into N pulses (Eq. 4.14) is illustrated in Fig. 4.3. For the case considered in the

illustration (pw = 10 ns, fs = 1 GHz, B = 10, and G varying between 10−1 and 103)

the range precision decreases rapidly as laser energy is divided into multiple pulses.

For example, when an accumulated gain of ten (G × N = 10) is divided into three

pulses, the range standard deviation CRLB is about twice as high as if all energy was

transmitted in a single pulse over most accumulated gain values shown in the figure.
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Figure 4.3: (a) Effect of pulse averaging on CRLB with B = 1.
(b) Effect of pulse averaging with B = 10.

4.2 Surface Orientation and Range Estimation

LADAR systems are capable of transmitting laser pulses with very short du-

rations. Typical systems have pulses that are only a few nanoseconds in duration.

Some future systems will employ pulses with even shorter durations. These short

pulses provide excellent range resolution and precision. However, when a target has

depth over the area illuminated by the beam, the reflection process causes the received

laser signal to be wider than the transmitted signal. The widened received signal has

less range precision than a signal that is not elongated due to target depth. Even

when a flat surface is targeted, that surface has depth if it is tilted with respect to

the LADAR line-of-sight.

In this section, the loss in range precision due to the tilt of a flat surface is

quantified. Unlike in previous sections of this dissertation, the noise in the LADAR

signal is assumed to be Gaussian. In practice, the Gaussian noise model does not

completely capture the fluctuations in signal level due to laser speckle. However it is an

accurate approximation for any system with a significant amount of electronic noise or

for a LADAR that makes use of diversity to reduce speckle fluctuations. The temporal

shape of the pulse is also modeled as a Gaussian function. These assumptions simplify
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the analytic calculations need to analyze this problem and produce concise formulas

describing the effect of tilt on the range CRLB.

The problem of target depth distorting the shape of received laser pulses has

been addressed by other authors [15, 45, 46]. The novel material contained in this

section is the analytic expression derived for a received laser pulse and the Cramer-

Rao lower bound on range precision when the target is tilted.

4.2.1 Scenario and Assumptions. A TEM00 Gaussian beam is assumed to

have been transmitted. A short pulse is used to achieve good range precision. Laser

pulses are described by their duration and their size. The size is the beam’s width

transverse to the system’s LOS. Propagated laser beam size is a function of beam

size at the transmit aperture, laser wavelength, the focus distance, and distance of

propagation. Beam size is dependent on the LADAR transmitter aperture. If the

width of the transmit aperture is fixed, then as beam size increases more laser power

is truncated by the opaque portions of the system. If the beam size is greater than

the aperture radius, then a significant amount of laser energy is truncated. Thus, the

beam size is almost always smaller than the aperture radius.

At ranges of less than a few kilometers, the effect of target tilt on range preci-

sion is negligible. However, LADAR systems are sometimes operated at long range.

Systems are used to do three-dimensional imaging from the air. Airborne LADAR

systems are used to image terrain and structures [43]. The three-dimensional data

can be used for mapping and for automatic target recognition (ATR) [53]. Airborne

systems have a wide field of regard and can operate at very long ranges. As range

increases, the beam size gets large and the effect of target tilt on range precision

becomes noticeable.

Because of size, weight, and power restrictions, transmit apertures in airborne

LADAR systems are usually only several inches wide at most. These relatively small

apertures keep the beam size small. Smaller transmitted beam size means larger beam
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size in the far field. Increases in beam size at the target exacerbate the problem of

range precision loss due to target tilt.

In military imaging scenarios the range to the target is often much greater than

the platform’s altitude. In this situation, even flat ground has a large tilt angle with

respect to the LOS. The loss in range precision can be significant in this case.

It is assumed that the LADAR is either monostatic or that the transmitter and

receiver apertures are located close together. Monostatic systems use transmit-receive

(TR) switches to prevent the detector from being damaged by the relatively intense

transmitted laser pulses. A TR switch enables the system to use a single aperture

for the transmission and reception of laser energy. If the system is bistatic, then

the transmit and receive apertures are almost always located so close together (they

commonly share a gimballed turret in airborne systems) that they can be treated as

monostatic for the purpose of this analysis.

4.2.2 Scenario Geometry. The scenario considered in this section is illus-

trated in Fig. 4.4. A short duration laser pulse is transmitted along the LADAR’s

line-of-sight. The temporal profile is assumed to be a Gaussian shape. The beam has

an irradiance profile that is defined by the amount of power transmitted over time

and the beam’s size after propagating to the target.

The beam hits a surface that may be tilted with respect to the LADAR’s LOS.

The surface is assumed to be flat over the width of the irradiance profile. This

assumption produces relatively simple analytic solutions for the received signal. If

the surface is not flat, then shape of the reflected pulse could be complicated and

would likely have to be calculated numerically. This sort of analysis has been done

in [45,46].

The reflected laser pulse is shown in Fig. 4.5. The target tilt, which is pa-

rameterized by angle φ (measured in radians), has elongated the reflected pulse as

compared to the incident pulse shown in Fig. 4.4. Precision of a range measurement
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Figure 4.4: Illustration of a laser pulse, its irradiance pattern,
and a tilted surface.

is dependent on the width of the received, not the transmitted pulse. Thus, the target

tilt with respect to the LADAR LOS causes a drop in range precision.

4.2.3 Propagation and Reflection. The field at the transmit aperture is

assumed to be Gaussian with beam size W0. The beam is focused at F0. The beam

size is the radius where the field magnitude is below the peak magnitude by a factor

of e−1. This Gaussian field is given by Eq. 2.11 and is shown again here.

U0(r, 0) =

[
2Pt(t)

πW 2
0

]1/2

exp

(
−1

2
αkr2

)
(4.21)

where

α =
2

kW 2
0

+
i

F0

. (4.22)
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Figure 4.5: Reflected laser pulse from a surface tilted at angle
φ with respect to the LADAR line-of-sight.

The function Pt(t) is the instantaneous transmitted power in the laser beam. The

Fresnel propagation of the field from Eq. 4.21 is

U0(r, z) =

[
2Pt(t)

πW 2
0

]1/2
1

1 + iαz
exp

[
ikz − αkr2

2(1 + iαz)

]
. (4.23)

The variable z is the distance of propagation along the LADAR LOS. The propagated

irradiance is

I0(r, z) = |U0(r, z)|2 =
2Pt(t)

πW 2
z

exp

(
−2

r2

W 2
z

)
(4.24)

where the beam size at range z is

Wz = W0

[(
1− z

F0

)2

+

(
λz

πW 2
0

)2
]1/2

. (4.25)

Eqs. 4.22 - 4.25 were also shown in Sec. 2.1.3, though the instantaneous power was

not shown as a function of time in that section.
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In a typical scenario, a LADAR receives only a tiny fraction of the laser energy

that it transmits. If the laser beam reflects off of a flat surface that is oriented

perpendicular to the line-of-sight, then the signal received by the LADAR, which is

denoted Pr(t), has the same shape as the transmitted pulse. Thus, the received signal

is proportional to the transmitted signal.

Pr(t) ∝ Pt(t). (4.26)

Note that the delay due to the round-trip propagation time has not been introduced

into Pr(t). That delay is added later in this section when the effect of target tilt is

analyzed.

Eq. 4.26 assumes that the propagated beam size is small compared to the

distance of propagation. That is, Wz << z. If a wide beam is propagated a short

distance, then the received signal Pr(t) could have a shape different than the shape of

the transmitted signal Pt(t). This happens when the LOS distance between different

parts of the illuminated target varies by an amount that is significant compared to

the laser pulse duration.

It is assumed that the LADAR receiver aperture is located at the origin of a

Cartesian coordinate system. The transmitted laser beam propagates in the positive

z-direction. Referring to Figs. 4.4 and 4.5, the distance of propagation from the origin

to target at coordinate (x, y) is approximately

z ≈ R + tan(φ)y (4.27)

where R is the range from the receiver to the target along the axis of propagation.

The preceding approximation assumes that the vertical coordinate is small compared

to the target range (y << R). In the figures, the y-axis has been defined as the

vertical. However, the orientation is arbitrary because of the radial symmetry of the

beam’s irradiance pattern.
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A tilt in the orientation of the target surface (φ 6= 0), will distort the received

laser pulse shape as compared to the transmitted shape. The signal received from a

small rectangle with widths ∆x and ∆y located at (x, y) is

∆x∆yI0(x, y, r)Pr

(
t− 2R

c

)
(4.28)

= ∆x∆y
2

πW 2
z

exp

(
−2

x2 + y2

W 2
z

)
Pr

(
t− 2R

c

)

= ∆x∆y
2

πW 2
z

exp

(
−2

x2 + y2

W 2
z

)
Pr

[
t− 2R

c
− 2 tan(φ)

c
y

]

where c is the speed of light. The radial coordinate r in the propagated irradiance

pattern (Eq. 4.24) has been replaced with the Cartesian coordinate (x, y) where

r2 = x2 + y2. The distance of propagation equation (Eq. 4.27) was also used to arrive

at this result.

The total received signal from a tilted surface Ptilt(t) can be derived by summing

over all of the signals from the small rectangles (Eq. 4.28).

Ptilt(t) (4.29)

=
∞∑

m=−∞

∞∑
n=−∞

∆x∆y
2

πW 2
z

exp

(
−2

x2
m + y2

n

W 2
z

)
Pr

[
t− 2R

c
− 2 tan(φ)

c
yn

]
.

This result can be approximated by an integral.

Ptilt(t) =

∞∫

x=−∞

∞∫

y=−∞

2

πW 2
z

exp

(
−2

x2 + y2

W 2
z

)
Pr

[
t− 2R

c
− 2 tan(φ)

c
y

]
dydx. (4.30)

Integrating over the x-axis yields

Ptilt(t) =

∞∫

y=−∞

(
2

πW 2
z

)1/2

exp

(
−2

y2

W 2
z

)
Pr

[
t− 2R

c
− 2 tan(φ)

c
y

]
dy. (4.31)
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If the surface tilt is zero (φ = 0), then the this equation is just Pr(t), delayed

by the round-trip propagation time. If the surface tilt is non-zero (φ 6= 0), then the

following two changes of variable are used to evaluate Eq. 4.31.

u = t− 2R

c
. (4.32)

v =
2 tan(φ)

c
y. (4.33)

Applying these changes of variable to Eq. 4.31 produces

Ptilt(t) ≈
∞∫

v=−∞

(
2

πW 2
z

)1/2

exp

[
−2

c2

4 tan2(φ)W 2
z

v2

]
Pr (u− v) dv

c

2 tan(φ)

=
c√

2π tan(φ)Wz

exp

[
− c2

2 tan2(φ)W 2
z

u2

]
∗ Pr (u) (4.34)

where ∗ denotes the convolution operation.

4.2.4 Gaussian Pulses. The equation describing the shape of a Gaussian

pulse, which is denoted pg(t), is

pg(t) = exp

(
− 1

2w2
t2

)
(4.35)

where w is the pulse width. The full-width half-maximum (FWHM) is a commonly

used metric to describe the width or duration of a pulse. The full-width half maximum

for the Gaussian pulse, which is denoted τg, is

τg = w [8 log(2)]1/2 . (4.36)
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The variable E is the laser pulse energy that is intercepted by the LADAR’s

receiver aperture and focused onto the detector. The energy is

E =

∞∫

−∞

Pr(t)dt. (4.37)

This equation describes the amount of optical energy in the received signal. The signal

Pr(t) is not the usual voltage or current signal common in the electrical engineering

literature. Thus, the signal is not squared to calculate its energy as is normally done

when characterizing signals.

The equation for a received Gaussian pulse with energy E is

Pr(t) =
E√
2πw

pg(t) =
E√
2πw

exp

(
− 1

2w2
t2

)
. (4.38)

This is Eq. 4.35 after scaling so that its energy is E.

The received signal from a flat tilted surface, which is calculated by substituting

Eq. 4.38 into Eq. 4.34, is

Ptilt(t) (4.39)

=

{
c√

2π tan(φ)Wz

exp

[
− c2

2 tan2(φ)W 2
z

u2

]}
∗

[
E√
2πw

exp

(
− 1

2w2
u2

)]
.

The convolution of two Gaussian waveforms with widths w1 and w2 and unity peak

height is

exp

(
− 1

2w2
1

t2
)
∗ exp

(
− 1

2w2
2

t2
)

=

(
2πw2

1w
2
2

w2
1 + w2

2

)1/2

exp

[
− 1

2 (w2
1 + w2

2)
t2

]
. (4.40)
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Thus, the convolution of these two Gaussian functions is another Gaussian function

with width
√

w2
1 + w2

2. Using Eq. 4.40, Eq. 4.39 becomes

Ptilt(t) (4.41)

=
E

√
2π

[
w2 + tan2(φ)W 2

z

c2

]1/2
exp



−

1

2
[
w2 + tan2(φ)W 2

z

c2

]
(

t− 2R

c

)2



 .

The variable wt is introduced to describe the width of a received Gaussian pulse that

has reflected off a tilted surface. It is

w2
t = w2 +

tan2(φ)W 2
z

c2
. (4.42)

Using wt, Eq. 4.41 becomes

Ptilt(t) =
E√
2πwt

exp

[
− 1

2w2
t

(
t− 2R

c

)2
]

. (4.43)

Examples of received Gaussian pulses after reflection off a tilted surface are

shown in Fig. 4.6. In this figure, a 2.5 cm beam propagates 10 km. The wavelength

is 1.6 µm. The beam hits targets tilted at various angles with respect to the LADAR

LOS.

In Fig. 4.6a, a τg = 1 ns FWHM pulse is transmitted. For a 15 degree tilt angle,

the received FHWM is only 1.09 ns. But with a 45 degree tilt, the pulse’s FWHM

nearly doubles. When the tilt reaches 75 degrees, the received FWHM is over six

times greater than the transmitted FHWM. In Fig. 4.6b, the transmitted FWHM

is 2 ns. This wider pulse is affected less by surface orientation than the 1 ns pulse.

However, target tilt still affects the received signal. For a 45 degree tilt, the received

FWHM increases about 28%. For the 75 degree tilt, the FWHM is over three times

wider than the transmitted FWHM.
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Figure 4.6: (a) Received signals for 1 ns FWHM pulse.
(b) Received signals for 2 ns FWHM pulse.

4.2.5 Parabolic Pulses. The equation for a received parabolic pulse with

energy E is

Pr(t) =
3E

4pw

pp(t) =
3E

4pw

(
1− t2

p2
w

)
rect

(
t

2pw

)
. (4.44)

This is Eq. 3.74, scaled so that its energy is E. Also, Eq. 3.74 is being evaluated

at range zero (Rrt = 0) in this case. For the parabolic pulse, the FWHM, which is

denoted τp, is

τp =
√

2pw. (4.45)

The received signal from a flat tilted surface, which is calculated by substituting

Eq. 4.44 into Eq. 4.34, is

Ptilt(t) =

{
c√

2π tan(φ)Wz

exp

[
− c2

2 tan2(φ)W 2
z

u2

]}
(4.46)

∗
[

3E

4pw

(
1− u2

p2
w

)
rect

(
u

2pw

)]
.

This equation is proportional to the convolution of a Gaussian (Eq. 4.35) and a

parabolic (Eq. 3.74) pulse. The constants in Eq. 4.46 are ignored for the moment
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and the convolution is denoted y(t).

y(t) = pp(t) ∗ pg(t) (4.47)

=

∞∫

−∞

pp(v)pg(v − t)dτ

=

pw∫

−pw

(
1− v2

p2
w

)
exp

[
−(v − t)2

2w2
tilt

]
dτ

where

w2
tilt =

tan2(φ)W 2
z

c2
. (4.48)

After extensive algebra, it can be shown that this convolution is

y(t) =
2w2

tilt

p2
w

exp

(
−p2

w + t2

2w2
tilt

)[
pwcosh

(
pwt

w2
tilt

)
+ tsinh

(
pwt

w2
tilt

)]
(4.49)

+
wtilt

√
π√

2

(
1− w2

tilt + t2

p2
w

) [
erf

(
pw − t√
2wtilt

)
+ erf

(
pw + t√
2wtilt

)]
.

Eq. 4.49 is illustrated and validated in Fig. 4.7. The Gaussian pulse width

is fixed at w = 2 ns and the parabolic pulse width varies between 0.5 and 4 ns.

The pulses are shown in Fig. 4.7a and the convolution in Fig. 4.7b. The analytic

expression for the convolution is shown, along with a numeric calculation in order to

validate the complicated expression from Fig. 4.7.

Eq. 4.49 can be used in Eq. 4.46 to calculate the received signal when a

parabolic pulse reflects off of a tilted surface.

Ptilt(t) =
c√

2π tan(φ)Wz

3E

4pw

y

(
t− 2R

c

)

=
3E√

2π4pwwtilt

y

(
t− 2R

c

)
(4.50)

where Eq. 4.48 was used. This equation is rather complicated. It would be difficult

to derive CRLBs or parameter estimation techniques given the signal in Eq. 4.50.
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Figure 4.7: (a) Parabolic pulses with various widths and Gaussian pulse with w = 2.
(b) Convolution of parabolic and Gaussian pulses.

Therefore, the remaining work in this chapter will focus on the Gaussian pulse model

from Sec. 4.2.4 instead of the parabolic pulse model.

4.2.6 Range Precision and the CRLB. The signals in Eqs. 4.34, 4.43,

and 4.50 describe the amount of optical power incident on the LADAR system’s

photodetector. The photodetector, typically a photodiode or photomultiplier tube,

converts the optical power into an electrical signal. The relationship between the

optical power and the photodetector’s output current i(t) is given by Eq. 2.26

i(t) =
Gqη

hν
Ptilt(t) = <Ptilt(t) (4.51)

where G is the detector’s gain, q is the electron charge, η is the fraction of photons

converted to electrons or quantum efficiency, h is Planck’s constant, and ν is the

laser optical frequency. This relationship between the received optical power and the

photocurrent is often written in terms of the detector’s responsivity < (see Eq. 2.27).

Responsivity has units of charge per energy, or equivalently, current per power.
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The energy in the photocurrent signal (denoted Ee), normalized to unit resis-

tance, is

Ee =

∞∫

−∞

i2(t)dt = <2

∞∫

−∞

P 2
tilt(t)dt. (4.52)

Notice that the optical energy E is the integral over Ptilt(t) (see Eq. 4.37) while the

electrical energy Ee is proportional to the integral over Ptilt(t) squared. Thus, there

is not a straightforward general relationship between the received optical energy E

and the signal electrical energy Ee.

The signal that is recorded by the LADAR system is corrupted by noise sources.

Noise sources include laser speckle, background light entering the LADAR’s receiver

aperture, dark current in the photodetector, and electronic noise in the analog-to-

digital converter (ADC). Laser speckle and background light are usually modeled

as Poisson processes [21, 31]. However, as the mean of a Poisson random variable

increases, its distribution approaches the shape of a Gaussian distribution. Thus,

Gaussian noise is sometimes an adequate approximation for the noise in LADAR

systems. In this section, it is assumed that the noise in the received signal is additive

white Gaussian.

The noisy received signal, denoted r(t), is

r(t) = i(t) + w(t) (4.53)

where w(t) is white Gaussian noise with a power spectral density (PSD) that has

height N0. This continuous-time signal is sampled at rate fs. The variance of the

Gaussian noise is denoted σ2. If an ideal anti-aliasing filter is used before the analog-

to-digital conversion, then the per-sample noise variance is

σ2 = fsN0. (4.54)
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The sampled signal is denoted r[n].

r[n] = r (n/fs) = i[n] + w[n]. (4.55)

Because the noise is additive white Gaussian, the distribution of the samples is

r[n] ∼ N [
i[n], σ2

]
. (4.56)

The anti-aliasing filter causes all of the noise realizations to be independent.

E [w[m]w[n]] = σ2δ[m− n] (4.57)

where

δ [m] =





1 if m = 0

0 if m 6= 0
(4.58)

is the Kronecker delta function.

Given a signal mixed with AWGN, the Cramer-Rao lower bound for estimates

of range is [23]

Var
[
R̂

]
≥ c2N0

4
∞∫
−∞

[
dPtilt(t)

dt

]2

dt

(4.59)

where R̂ is any unbiased estimate of target range. Range estimation usually involves

multiple steps. Combinations of matched filters and peak-fitting algorithms are com-

mon. One of the reasons that Cramer-Rao lower bounds are valuable is that they are

valid regardless of the exact algorithm used to produce the range estimate. As long

as the estimate produced by the algorithm is unbiased, the CRLB is valid.

The signal model from Eq. 4.43 differs from the model used in [23] in that the

width of the received signal is unknown. However, the Gaussian pulse with AGWN

model was also studied in [16]. In that reference, it was proved addition of an unknown
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width parameter to the model does not change the range CRLB. Thus, the CRLB

from Eq. 4.59 is valid in this case.

Using Fourier transform properties, the integral in Eq. 4.59 can be expressed

∞∫

−∞

[
dPtilt(t)

dt

]2

dt =

∞∫

−∞

|2πfF {Ptilt(t)}|2 df = 4π2

∞∫

−∞

f 2 |F {Ptilt(t)}|2 df (4.60)

where F {} denotes the Fourier transform operation. The mean squared bandwidth

of the signal, which is denoted σ2
f , is

σ2
f =

∞∫
−∞

f 2 |F {Ptilt(t)}|2 df

∞∫
−∞

|F {Ptilt(t)}|2 df

. (4.61)

Using this result, the CRLB can be written

Var
[
R̂

]
≥ 1

SNR

(
c

4πσf

)2

(4.62)

where the SNR is

SNR =
Ee

N0

. (4.63)

It is the ratio of the signal’s electrical energy Ee to the height of the AWGN PSD

(N0).

4.2.7 Gaussian Pulse CRLB. Given the Gaussian pulse from Eq. 4.38, the

noiseless electrical signal is

i(t) =
<E√
2πwt

exp

[
− 1

2w2
t

(
t− 2R

c

)2
]

. (4.64)

The electrical energy in this signal is (see Eq. 4.52)

Ee =
<2E2

2
√

πwt

. (4.65)
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Eq. 4.43 is used to calculate the mean squared bandwidth. The Gaussian pulse mean

square bandwidth is

σ2
f =

1

8π2w2
t

. (4.66)

Therefore, the CRLB for target range measurements made with a Gaussian pulse is

Var
[
R̂

]
≥ 1

SNR

c2w2
t

2
. (4.67)

Examples of Gaussian pulse range CRLBs are shown in Fig. 4.8. In this figure,

a 2.5 cm beam intercepts a target 10 km away from the LADAR. A 1.6 µm wavelength

is assumed. In Fig. 4.8a, the transmitted pulse FWHM is 1 ns. The increase in the

CRLB for a 15 degree tilt is small. However, once the tilt is 45 degree, the CRLB,

which in standard deviation is proportional to the received pulse width wt, has nearly

doubled. For a 75 degree tilt, the CRLB is over six times greater than if the target

was perpendicular to the LOS. In Fig. 4.8b, the transmitted pulse FWHM is 2 ns.

This wider pulse is affected less by target tilt than the 1 ns pulse. For example, the

15 and 30 degree tilts are almost negligible in this case. However, for equal SNRs,

the wider 2 ns pulse had a worse range precision in the absence of target surface tilt.

Thus, given a fixed SNR, it is best to use the shortest pulse possible even though

shorter pulses are more suspectable to distortion because of target tilt.

It was shown in Fig. 4.1 that if the noise in a signal is AWGN that the CRLB can

be achieved unless the background noise dominates. However, the true received pulse

width must be known in order to reach the bound. If the pulse width is unknown,

then the filter used for range estimation will not be designed properly and the range

estimates will less precise than the CRLB predicts. This issue was studied for Poisson

noise and is illustrated in Fig. 3.13.

The detrimental effect of target tilt on range precision can be mitigated by

increasing the transmitted beam size. Larger transmitted beams make it possible to

focus the beam into a smaller area at range. Thus, there is less spreading of the
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Figure 4.8: (a) Range CRLBs for 1 ns FWHM pulse.
(b) Range CRLBs for target tilted 45 degrees.

received pulse. The effect is illustrated in Fig. 4.9a. The target is assumed to have a

45 degree tilt. Doubling the beam size from 2.5 cm to 5 cm decreases the CRLB by

about one-third. However, greater increases in beam size yield a diminishing return

since the transmitted pulse’s 1 ns FWHM is not decreased. On the other hand,

received optical energy is proportional to receiver aperture area. If the increase in

beam size is accompanied by an increase in receiver aperture diameter, then the SNR

will increase. It is necessary to focus the beam to gain this benefit. Increasing the

size of a collimated beam will actually decrease the range precision since propagated

beam size for collimated beams increases monotonically with increases in transmitted

beam size.

In Fig. 4.9b, the effect of varying the transmitted pulse’s duration is studied. In

the absence of target tilt, the range standard deviation is proportional to the FHWM.

However, target tilt makes that relationship nonlinear. Given a target tilted at 45

degrees and a 2.5 cm beam propagating 10 km, there is a good increase in precision

when the FWHM drops from 10 to 3 ns and again when it drops from 3 to 1 ns.

However, decreasing the FHWM from 1 ns to 0.3 ns does little to improve the range

precision for the 45 degree target. Without tilt, the range standard deviation would

121



−10 −5 0 5 10 15 20 25 30

10
0

10
1

10
2

SNR (dB)

R
an

ge
 S

td
. D

ev
. (

cm
)

Range CRLBs for Various Beam Sizes

 

 

τ
g
=1ns

λ=1.6µm

45° deg. Tilt
R=F

0
=10km

W
0
=2.5cm

W
0
=5cm

W
0
=7.5cm

W
0
=10cm

W
0
=12.5cm

(a)

−10 −5 0 5 10 15 20 25 30

10
0

10
1

10
2

SNR (dB)

R
an

ge
 S

td
. D

ev
. (

cm
)

Range CRLBs for Various Pulse Widths

 

 

45° deg. Tilt
λ=1.6µm
W

0
=2.5cm

R=F
0
=10km

τ
g
=0.1ns

τ
g
=0.3ns

τ
g
=1ns

τ
g
=3ns

τ
g
=10ns

(b)

Figure 4.9: (a) Range CRLBs for 1 ns FWHM pulse.
(b) Range CRLBs for 2 ns FWHM pulse.

have dropped by a factor of 0.3. The performance difference between 0.3 and 0.1 ns

FHWM pulses is almost not noticeable since in that case the width of the received

pulse is dominated by the effect of target depth.

4.3 Chapter Summary

The range precision of LADAR systems was discussed in this chapter. Different

signal and noise models were used to analyze range precision. In Sec. 4.1, the range

CRLB derived in Chapter III for a truncated parabolic pulse in Poisson noise was

compared to the bound for the same pulse shape and Gaussian noise. It was shown

that the Poisson-noise CRLB was higher (worse range precision) than the Gaussian

noise bound. The effect of pulse averaging was also discussed in Sec. 4.1. It was shown

that if a fixed amount of laser energy is divided equally into multiple laser pulses, then

the range precision for the accumulated or averaged signal drops as the number of

pulses increases. Thus, transmitting laser energy in as few pulses as possible will

maximize a LADAR’s range precision.

In Sec. 4.2, it was noted that the reflection process can elongate a laser pulse. It

was also shown that pulse elongation decreases range precision. Given a pulse with a
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Gaussian shape mixed with AWGN noise, the range CRLB was calculated in terms of

target surface orientation and other LADAR system parameters such as transmitter

aperture size, range to target, and laser beam focus distance. Given an aperture that

is a few inches in diameter and a laser pulse that is at least a nanosecond in duration,

the effect of a target surface tilt on range precision is negligible at ranges less than a

few kilometers. However, airborne LADAR systems can encounter scenarios where a

target surface tilt can produce a significant drop in range precision. The amount of

increase in the range CRLB due to target tilt was quantified in Sec. 4.2.
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V. Gain Variation in APD Arrays

Some modern LADAR systems make use of compact arrays of avalanche photodiodes

to produce high-resolution three-dimensional images of scenes. The arrays in those

systems are often very compact. Systems with over ten thousand detector elements

have been demonstrated. The sheer number of pixels present in modern photodetector

arrays can eliminate the need for scanning equipment in LADAR systems. However,

the miniaturization process used to make the compact detector arrays can introduce

undesirable effects. An unwanted property that has been observed in arrays of APDs

is gain variation.

Gain variation refers to fluctuation in the relationship between the number of

electrons detected by the photodiode and the output current of that device. Ideally,

this relationship would be fixed. In practice, it has been shown that gain can fluctuate

over time. These fluctuations effect the entire array. The fluctuation can distort the

shape of the received signal and can even create false signals on detector pixels that

did not actually observe a laser signal.

In this chapter, mathematical models are proposed to represent gain variation in

arrays of photodiodes. These models of signals observed by LADAR detector arrays

are used to derive numeric methods of gain estimation. The numeric methods are

tested using Monte Carlo simulations and LADAR data.

In Sec. 5.1, three-dimensional LADAR data collected during an experiment

using a large target panel is displayed and the effect of gain variation on range-

resolved signals is illustrated. In Sec. 5.2, a numeric method of gain estimation based

on the Gauss-Newton iteration is derived and tested on simulated and real LADAR

data. Finally, in Sec. 5.3, an alternative method of gain estimation using target-free

LADAR data is derived and tested on LADAR data.

5.1 FLASH LADAR Data

Gain variation has been observed in the Advanced Scientific Concepts (ASC)

LADAR system operated by AFRL Sensors Directorate. The likely cause of the gain
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variation in this LADAR is the fact that the APD array was built around one common

voltage regulator [37]. The voltage regulator attempts to keep the bias voltage Vbias

constant. However, the bias voltage appears to fluctuate over time. Since the gain in

a photodiode is a function of the bias voltage (Eq. 2.50), the gain varies with changes

in that voltage.

The ASC LADAR is a flash system. Flash LADAR systems use a single laser

pulse to image an entire scene. The imaging is accomplished using an array with

many pixels. The ASC LADAR uses an 128× 128 array of InGaAs photodiodes. The

laser wavelength of this system is 1.54µm. The detector array is bonded to a readout

integrated circuit (ROIC). This ROIC samples the received LADAR signals at a rate

of 420 MHz, corresponding to a round-trip range sampling resolution of 0.36 m.

The laser transmitter produces 1.7 mJ pulses with a full-width half-maximum

of 4.7 ns. These pulses are diffused over an angle of 1.5 degrees. The LADAR data

was collected using a 500 mm focal length lens with a 80 mm aperture. The laser is

eye-safe at ranges more than a few inches from the aperture.

The APDs in the detector array are separated by 100 µm. They are approxi-

mately 10 µm in width. An array of lenslets is used to improve the effective fill factor

of the detector array. With the 500 mm lens, the instantaneous field of view (IFOV)

of the pixels is 0.2 milliradians.

The ASC LADAR stores twenty samples per pixel. Therefore, the sampling

depth for the system is only 7.2 m. The entire system operates at a 20 Hz rate, which

provides three-dimensional image information at a rate compatible with typical video

displays. Descriptions of LADAR systems built by ASC and examples of their imaging

capabilities are shown in [47,48].

A three-dimensional image of a target panel is shown in Fig. 5.1. The data was

collected at Wright-Patterson Air Force Base. This image was collected using the Air

Force Research Laboratory’s ASC LADAR system. The LADAR system was located

in a tower and was 23 m above the ground. The range to the target panel was 70
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Figure 5.1: LADAR image of a target panel.

m. Thus, the downlook angle was 20 degrees. The target panel was made of plywood

and was not painted or coated. That panel was 155 cm high and had a similar width.

In Fig. 5.1, the intensity from the tenth of the twenty range slices is shown. The

target panel was supported manually. During the data collections, the target panel

orientation with respect to the LOS was varied. There is significant fluctuation in the

individual signals, so they are averaged over multiple image frames. In this case, 108

signals were averaged.

Range-resolved LADAR data collected by the ASC system is illustrated in Fig.

5.2. In Fig. 5.2a, four signals from the target panel are illustrated. In this experiment,

the target panel was tilted. Data with lower row numbers corresponded to longer

ranges to the panel. For all four signals, the first five or six samples are noise. In row

one-hundred, the target appears in the six or seventh sample. The row forty target

was not reached until sample ten. Near samples eight and nine, a drop in gain is

visible in the row forty and row sixty data before the target panel is observed in those
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Figure 5.2: (a) LADAR signals from target panel.
(b) Background noise in LADAR image.

pixels. The variation in gain also altered the observed width of the laser pulse. The

pulse is much wider in rows eighty and one-hundred than in rows twenty and forty.

Fig. 5.2b illustrates data from pixels where no target is present. In these

pixels, the first seven samples contain only noise with mean level around five hundred.

However, in samples eight and higher, the gain has dropped and the mean is around

two hundred. This data is typical of what was observed throughout the experiment.

A laser signal or signals affected the gain on all pixels in the array. The gain variation

was observed whether or not there was actually a laser signal in the pixel.

5.2 Gauss-Newton Method for Gain Estimation

In this section, the Gauss-Newton method of parameter estimation is used to

solve for the unknown gain in a LADAR detector array. This method requires that

the probability density function of the data is known. Therefore, a signal model

is developed to approximate the data observed by a LADAR system. This model

assumes white Gaussian noise, but does not assume knowledge of the signal amplitudes

or the target ranges. Those parameters are estimated along with the unknown gain

values by the Gauss-Newton iteration.

127



5.2.1 Detector Array Signal Model. The model used to represent signals

observed by the detector array is based on the LADAR signal model from [4]. How-

ever, some modifications have been made to that equation. The temporal pulse shape

is assumed to be a Gaussian function, rather than the truncated parabola from Eq.

2.29. Also, it is assumed that the noise in all samples is modeled by independent and

identically distributed (IID) Gaussian random variables. Some detector signal models

used earlier in this dissertation assumed Poisson noise.

The detector array signal model is

Ik,m = Gkik,m (5.1)

= Gk

{
Am exp

[
−(k −Rm)2

2w2

]
+ Bm

}

where

ik,m = Am exp

[
−(k −Rm)2

2w2

]
+ Bm (5.2)

is the signal before the variable gain is applied. In Eq. 5.1, k denotes the temporal

sample index and m denotes the detector pixel (spatial) index. Note that in this

equation, the k, Rm, and w have units of samples. Each detector records K samples

and there are M detectors in the array. The variable Am is the peak amplitude of the

received signal before gain. The range to the target, in samples, is denoted Rm. The

bias level on the m-th detector element is Bm.

It is assumed that the gain values (the Gk’s) are unknown. It is also assumed

that the signal amplitude and range values (the Am’s and the Rm’s) are unknowns.

However, the biases on each detector’s signal (the Bm’s) are assumed to be known. In

a real LADAR system, the bias is not known and must be estimated from the data.

However, noise data, which can be used to measure the bias, is normally abundant.

The large amount of available noise data can be used to produce precise bias estimates

for each detector in the array.
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The pulse width w is assumed known. There are LADAR imaging scenarios

where this assumption is not realistic. However, during the data collection with the

ASC system, the range to the target was short. Also, the system’s instantaneous field

of view is narrow. Under these circumstances (short range and narrow IFOV), target

depth in individual pixels is normally shallow and the pulse width does not stretch

significantly because of reflection.

The k-th sample recorded by the m-th detector in the array is the random

variable Dk,m. This random variable has mean Ik,m and additive noise. It has been

assumed that the noise is Gaussian. The variance of each sample is σ2.

Dk,m ∼ N [
Ik,m, σ2

]
. (5.3)

The probability density function is

pDk,m
(dk,m) =

1√
2πσ2

exp

[
− 1

2σ2
(dk,m − Ik,m)2

]
(5.4)

where dk,m is a realization of random variable Dk,m. Since the noise is IID, the joint

distribution of the data is the product of the PDFs of the dk,m’s. Let D denote the set

of random variables and d denote the realization of the set of those random variables.

The joint PDF of D is

pD (d) =
K∏

k′=1

M∏

m′=1

pDk′,m′ (dk′,m′) (5.5)

=
K∏

k′=1

M∏

m′=1

1√
2πσ2

exp

[
− 1

2σ2
(dk′,m′ − Ik′,m′)2

]

=
1

(2πσ2)KM/2
exp

[
− 1

2σ2

K∑

k′=1

M∑

m′=1

(dk′,m′ − Ik′,m′)2

]
.

Let g denote the set of K unknown gain values, let a be the set of M unknown

amplitude values, and let r be the set of M range values. The log-likelihood function
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for random data set d is

l (g, a, r|d) = −KM

2
log

(
2πσ2

)− 1

2σ2

K∑

k′=1

M∑

m′=1

(dk′,m′ − Ik′,m′)2 . (5.6)

This log-likelihood function is relatively complicated. Its complexity will likely prevent

efficient calculation of maximum likelihood estimates. However, in the next section,

it is shown that it can be used in combination with the Gauss-Newton method to

derive iterative estimates of the unknown parameters.

5.2.2 Iterative Gain Estimation. The unknown parameters in the detector

array signal model from Eq. 5.1 can be estimated using the Gauss-Newton method.

The Gauss-Newton method is an iterative technique for parameter estimation that is

based on the log-likelihood function. The Gauss-Newton method is described in Fun-

damentals of Statistical Signal Processing: Estimation Theory by Kay [23]. Given a

log-likelihood function with unknown parameter vector θ, the Gauss-Newton method

relies on an initial estimate of the unknown parameters, θ̂0. This estimate is not

expected to be an optimal measurement of the unknown parameters. However, the

Gauss-Newton method requires an precise initial estimate. If the initial estimate is not

precise, the iteration could converge to a local maximum as opposed to the desired

global maximum of the likelihood function. Given estimate θ̂n, the Gauss-Newton

iterative update is

θ̂n+1 = θ̂n −
[
Λ(θ̂n)

]−1

λ(θ̂n). (5.7)

The matrix Λ and the vector λ in Eq. 5.7 are populated by derivatives of the log-

likelihood function. The vector λ contains the first derivatives of the log-likelihood

function. The i-th element of λ is the derivative of l (θ) with respect to the i-th

unknown parameter.

[λ]i =
∂l (θ)

∂θi

(5.8)

where θi is the i-th element of θ. The elements of matrix Λ are the second derivatives

of the log-likelihood function. The element in the i-th row and j-th column of matrix
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Λ is

[Λ]ij =
∂2l (θ)

∂θi∂θj

. (5.9)

The likelihood function is parameterized by θ. That parameter vector is being

updated iteratively. Within the iteration, Λ and λ are evaluated using the unknown

parameter vector estimate from the previous step. This explains the notation λ(θ̂n)

and Λ(θ̂n) in Eq. 5.7.

The first derivatives of the log-likelihood function are

∂l (θ)

∂θi

=
∂

∂θi

[
− 1

2σ2

K∑

k′=1

M∑

m′=1

(dk′,m′ − Ik′,m′)2

]

=
1

σ2

K∑

k′=1

M∑

m′=1

(dk′,m′ − Ik′,m′)
∂Ik′,m′

∂θi

. (5.10)

The second derivative with respect to θi is

∂2l (θ)

∂θ2
i

=
1

σ2

K∑

k′=1

M∑

m′=1

[
(dk′,m′ − Ik′,m′)

∂2Ik′,m′

∂θ2
i

−
(

∂Ik′,m′

∂θi

)2
]

. (5.11)

These second derivatives are the diagonal elements of Λ. Matrix Λ also contains

second derivatives with respect to θi and θj. These derivatives are the off-diagonal

elements of Λ. These derivatives are

∂2l (θ)

∂θiθj

=
1

σ2

K∑

k′=1

M∑

m′=1

[
(dk′,m′ − Ik′,m′)

∂2Ik′,m′

∂θiθj

− ∂Ik′,m′

∂θi

∂Ik′,m′

∂θj

]
. (5.12)

These log-likelihood derivative expressions with respect to general unknown param-

eters θi and θj, can be used to find elements of λ and Λ specific to the likelihood

function associated with the joint density from Eq. 5.5.

The next step in the derivation of the Gauss-Newton iteration is evaluation of

the derivatives of the signal from Eq. 5.1. The derivative of the signal with respect
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to the k-the gain value is
∂Ik,m

∂Gk

= ik,m. (5.13)

The signal Ik,m does not depend on the gain on samples other than the k-th sample.

Therefore,
∂Ik,m

∂Gl

= 0 when k 6= l. (5.14)

The signal derivatives with respect to the amplitude and range for the m-th detector

are
∂Ik,m

∂Am

= Gk exp

[
−(k −Rm)2

2w2

]
(5.15)

and
∂Ik,m

∂Rm

=
GkAm

w2
(k −Rm) exp

[
−(k −Rm)2

2w2

]
. (5.16)

The amplitude and range of signal Ik,m do not depend on range and amplitude values

of signals on other detectors. Therefore,

∂Ik,m

∂An

=
∂Ik,m

∂Rn

= 0 when m 6= n. (5.17)

Second derivatives of Ik,m are also needed to evaluate the terms in the Gauss-

Newton iteration. Second derivatives with respect to gain and amplitude are zero.

∂2Ik,m

∂G2
k

=
∂2Ik,m

∂A2
m

= 0. (5.18)

The range second derivative is not zero.

∂2Ik,m

∂R2
m

= −GkAm

w2
exp

[
−(k −Rm)2

w2

]
+

GkAm

w4
(k −Rm)2 exp

[
−(k −Rm)2

2w2

]

=
GkAm

w2

[
(k −Rm)2

w2
− 1

]
exp

[
−(k −Rm)2

2w2

]
. (5.19)
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Terms dependent on derivatives of different gain values are zero

∂2Ik,m

∂Gk∂Gl

= 0 when k 6= l. (5.20)

Similarly, derivatives dependent of different amplitude or different range values are

zero.
∂2Ik,m

∂Am∂An

=
∂2Ik,m

∂Rm∂Rn

=
∂2Ik,m

∂Am∂Rn

= 0 when m 6= n. (5.21)

The derivatives corresponding to gain and amplitude values are

∂2Ik,m

∂Gk∂Am

= exp

[
−(k −Rm)2

2w2

]
. (5.22)

The gain and range derivatives are

∂2Ik,m

∂Gk∂Rm

=
Am

w2
(k −Rm) exp

[
−(k −Rm)2

2w2

]
. (5.23)

The final derivative needed is

∂2Ik,m

∂Am∂Rm

=
Gk

w2
(k −Rm) exp

[
−(k −Rm)2

2w2

]
. (5.24)

The first derivatives of l (g, a, r|d) are needed to evaluate the elements of λ.

Eqs. 5.8 and 5.10 are combined to find the derivative with respect to unknown gain

terms Gk.

∂l (g, a, r|d)

∂Gk

=
1

σ2

K∑

k′=1

M∑

m′=1

(dk′,m′ − Ik′,m′)
∂Ik′,m′

∂Gk

=
1

σ2

M∑

m′=1

(dk,m′ − Ik,m′) ik,m′ (5.25)
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where Eqs. 5.13 and 5.14 were used. The other elements of λ are

∂l (g, a, r|d)

∂Am

=
1

σ2

K∑

k′=1

(dk′,m − Ik′,m) Gk′ exp

[
−(k′ −Rm)2

2w2

]
(5.26)

and

∂l (g, a, r|d)

∂Rm

(5.27)

=
1

σ2

K∑

k′=1

(dk′,m − Ik′,m) Gk′Am
k′ −Rm

w2
exp

[
−(k′ −Rm)2

2w2

]
.

The first and second derivatives of l (g, a, r|d) are needed to evaluate the ele-

ments of Λ. The diagonal elements of Λ are evaluated first, beginning with the gain

terms. Using Eq. 5.11

∂2l (g, a, r|d)

∂G2
k

= − 1

σ2

M∑

m′=1

i2k,m′ . (5.28)

The terms associated with the unknown signal amplitudes (the Am’s) are

∂2l (g, a, r|d)

∂A2
m

= − 1

σ2

K∑

k′=1

{
Gk′ exp

[
−(k′ −Rm)2

2w2

]}2

. (5.29)

The range terms are

∂2l (g, a, r|d)

∂R2
m

(5.30)

= − 1

σ2

K∑

k′=1

(dk′,m − Ik′,m)
Gk′Am

w2

[
1− (k′ −Rm)2

w2

]
exp

[
−(k′ −Rm)2

2w2

]

− 1

σ2

K∑

k′=1

{
Gk′Am

k′ −Rm

w2
exp

[
−(k′ −Rm)2

2w2

]}2

.
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Now the off-diagonal elements of Λ are calculated. Terms corresponding to

derivatives to different gain values are zero.

∂2l (g, a, r|d)

∂Gk∂Gl

= 0 when k 6= l. (5.31)

Several other off-diagonal elements of Λ are zero.

∂2l (g, a, r|d)

∂Am∂An

=
∂2l (g, a, r|d)

∂Rm∂Rn

=
∂2l (g, a, r|d)

∂Am∂Rn

= 0 when m 6= n. (5.32)

However, terms derived using derivatives of gain and amplitude are not zero. These

terms are
∂2l (g, a, r|d)

∂Gk∂Am

=
1

σ2
(dk,m − 2Ik,m) exp

[
−(k −Rm)2

2w2

]
. (5.33)

The gain and range terms are

∂2l (g, a, r|d)

∂Gk∂Rm

=
1

σ2
(dk,m − 2Ik,m) Am

k −Rm

w2
exp

[
−(k −Rm)2

2w2

]
. (5.34)

The final terms from Λ are

∂2l (g, a, r|d)

∂Am∂Rm

(5.35)

=
1

σ2

K∑

k′=1

(dk′,m − Ik′,m) Gk′
k′ −Rm

w2
exp

[
−(k′ −Rm)2

2w2

]

− 1

σ2

K∑

k′=1

Am
k′ −Rm

w2

{
Gk′ exp

[
−(k′ −Rm)2

2w2

]}2

.

All terms necessary to evaluate λ and Λ have been derived. The elements of

λ are shown in Eqs. 5.25-5.27. The elements on the diagonal of Λ are found in

Eqs. 5.28-5.30. The off-diagonal elements Λ are listed in Eqs. 5.31-5.35. In the next

section, the Gauss-Newton iterative solution to the array signal model is tested via

simulation.
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5.2.3 Simulations. In this section, the Gauss-Newton iterative gain esti-

mation process derived in Sec. 5.2.2 is tested using Monte Carlo simulations. The

simulated signals are illustrated in Fig. 5.3. Four signals were generated (M = 4).

Each of those signals had thirty-two samples (K = 32). The range and amplitudes of

the signals were generated randomly. The range values, measured in samples, were

between eight and twenty-four. The amplitude values were between ten and twenty.

The width of the Gaussian pulse was set at three samples (w = 3). This value

was assumed to be known in the Gauss-Newton iteration. The bias level on each

signal was generated randomly. The bias values were between five and ten. These

values were assumed to be known for the iteration. In a real LADAR system, the

background or bias level must be estimated. However, noise data is abundant and

precise background level measurements are usually available.

The additive IID Gaussian noise in each sample had unit variance (σ2 = 1).

Knowledge of this value is not needed by the Gauss-Newton iteration. All elements of

vector λ and Λ are inversely proportional to σ2. Therefore λ and Λ are also inversely

proportional to σ2. The Gauss-Newton iteration (Eq. 5.7) contains the term Λ−1λ.

The variance in that term cancels since Λ−1 is proportional to σ2. Thus, the variance

is not needed in the Gauss-Newton iteration equations.

A series of gain values, common to all four signals, was generated. The sequence

of gain values in the Monte Carlo was a sinusoid with values between 0.8 and 1.2.

The phase of this sinusoid was generated randomly and the frequency was selected so

that there were about two complete oscillations over the thirty-two samples.

In Fig. 5.3a, the simulated signals before the gain is applied are illustrated by

solid lines. The signals after the multiplicative gain values are applied are shown as

broken lines. The signals before and after gain are related according to Eq. 5.1. There

is also a random realization of simulated LADAR data in Fig. 5.3b. The signals with

gain (broken lines) are shown for comparison. The unit variance additive noise is
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Figure 5.3: (a) Simulated signals before and after variable gain.
(b) Noisy data with variance σ2 = 1.

distributed according to Eq. 5.5. The noise is noticeable, but is not very powerful

compared to the signal energy.

The simulated LADAR data shown in Fig. 5.3 was processed using the Gauss-

Newton iteration from Eq. 5.7. That equation required an initial estimate of the

unknown parameter vector θ̂0. The actual order in which the gain, amplitude, and

range estimates are arranged in θ is arbitrary. The convention adopted in this disser-

tation is to order the gain estimates first, then the amplitude estimates, and finally

the range estimates.

The initial K gain estimates are all assumed to be one.

[
θ̂0

]
k

= 1 ∀ k. (5.36)

The M initial amplitude estimates are determined from the data. These estimates

are the peak value on each detector minus the known bias Bm on that detector.

[
θ̂0

]
m+K

= max
k
{dk,m −Bm : k = 1, 2, . . . , K} (5.37)
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The initial range estimate, in samples, is the argument k corresponding to the maxi-

mum recorded value on the m-th detector.

[
θ̂0

]
m+2K

= arg max
R
{dk,m : k = 1, 2, . . . , K} . (5.38)

The initial estimates from Eqs. 5.36, 5.37, and 5.38 are used to initialize the

Gauss-Newton iteration. Those initial estimates are also needed to evaluate λ and Λ

in the Gauss-Newton iteration. The initial iteration is

θ̂1 = θ̂0 −
[
Λ(θ̂0)

]−1

λ(θ̂0). (5.39)

After this initial calculation is made, the process is repeated using Eq. 5.7. In

theory, this Gauss-Newton iteration always converges. However, it is possible for

it to converge to a local maximum rather than the desired global maximum of the

likelihood function. In practice, numeric errors in the calculations can make the

iteration unstable. In that case, the parameter estimates may fail to converge to

finite values.

It is straightforward to tell when the iteration is not converging. In that case,

the magnitudes of at least some of the estimates approach infinity. Also, the condition

number of matrix Λ becomes very large. The condition number is defined to be the

ratio of the largest to the smallest singular value of a matrix [18]. If the Gauss-Newton

iteration does not converge it can be tried again using different initial estimates. In a

LADAR system with multiple detectors, it is also possible to omit data from certain

detectors when implementing the iteration. It is possible that omitting data from

some detectors could cause the iteration to converge even though it did not when

data from all detectors was used.

Using the simulated LADAR data shown in Fig. 5.3, the Gauss-Newton derived

in Sec. 5.2.2 iteration was tested. The initial estimate of θ was calculated using

Eqs. 5.36, 5.37, and 5.38. Twenty iterations of the algorithm were computed. The
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amplitude and range estimates for each of the four simulated detectors are shown in

Fig. 5.4.

Range estimation was straightforward since the initial estimates were precise.

All initial estimates were within two samples of the true value (see Fig. 5.4a). The

algorithm converged to stable and precise range estimates with a few steps. Amplitude

estimation was more challenging because of the unknown gain values in the simulated

LADAR data. Initial amplitude estimates were off by over one-quarter of the true

value. However, after about ten steps, the Gauss-Newton iteration converged to stable

and relatively precise estimates of the true amplitude values (see Fig. 5.4b).

The iteration also yielded estimates of the unknown gain values in the simulated

LADAR data. The final gain estimates after twenty iterations of the Gauss-Newton

algorithm are shown in Fig. 5.5a. Most of the estimates are within ten percent of

the true gain value even though only four detectors were simulated. If there had been

data from more than four detectors, then these gain estimates would have been even

more precise.

Using the final estimates of gain, amplitude, and range, the original LADAR

signals can be estimated. These estimates are plotted in Fig. 5.5b. The true signals

are shown for comparison. There is good agreement between the true signals and

the estimated signals that are defined by the output parameter estimates from the

Gauss-Newton iteration.

5.2.4 Gain Estimation with LADAR Data. The Gauss-Newton iteration

derived in Sec. 5.2.2 was tested on LADAR data collected by the ASC camera. Data

from the target panel shown in Fig. 5.1 was used. The algorithm was seeded using

the initialization equations from Sec. 5.2.3.

The Gauss-Newton iteration was tested on many different combinations of pixels

from the target panel. The performance of the algorithm using real LADAR data was

bad. In the vast majority of cases, the iteration diverged immediately. In those cases,

estimates of range, amplitude, and gain immediately trended toward unreasonable

139



2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

Detector Array Signal Model

Iteration

R
an

ge
 E

st
im

at
e

 

 

0.8<G
k
<1.2

15<A
m

<30
8<R

m
<24

10<B
m

<20

w=3 Samples
σ2=4

True Range
Estimate

(a)

2 4 6 8 10 12 14 16 18 20
15

20

25

30
Detector Array Signal Model

Iteration

A
m

pl
itu

de
 E

st
im

at
e

 

 

0.8<G
k
<1.2

15<A
m

<30
8<R

m
<24

10<B
m

<20

w=3 Samples
σ2=4

True Amplitude
Estimate

(b)

Figure 5.4: (a) Iterative estimation of the unknown range values.
(b) Iterative estimation of the unknown amplitude values.
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Figure 5.5: (a) Estimation of unknown gain values.(b) Estimated signals.
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Figure 5.6: (a) Gain estimates after ten iterations.(b) Signal estimates.

values. When the iteration diverged, the condition number of Λ became very large

within a few steps and that matrix became impossible to accurately invert.

In some tests of the Gauss-Newton iteration, the gain estimates started to look

similar to the shape of the range-resolved LADAR data. One of these cases is illus-

trated in Fig. 5.6a. The four pixels of LADAR data used in this case are shown in Fig.

5.6b. The algorithm was allowed to iterate ten times. The gain estimates correspond-

ing to background (noise) data were approximately one. However, the gain estimates

when laser pulses were present in the data were several times greater than one and

took on the shape of the pulses. In this case, the modeled LADAR signals using the

algorithm’s estimates were reasonably accurate. However, the modeled signals did

not accurately capture the range variations in the signals. The closest and farthest

LADAR signals are about two samples apart. But the range estimates provided by

the Gauss-Newton iteration are all within a fraction of a sample.

Inspection of the range and amplitude values during iteration shows a problem

in the process. The iteration consistently drove the signal amplitude estimates toward

zero (see Fig. 5.7b). In some cases, the amplitude estimates took negative values.

Negative amplitudes are physically meaningless. As illustrated in Fig. 5.6, the Gauss-
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Figure 5.7: (a) Iterative estimation of the unknown range values.
(b) Iterative estimation of the unknown amplitude values.

Newton iteration preferred to model the laser pulses using the gain values rather than

the Gaussian pulse shape embedded in the signal model. As the amplitude values

dropped, the range estimates became unstable. The range estimates started to vary

quickly between steps of the iteration. Eventually, the range estimates always moved

outside the range of meaningful values and the condition number of Λ became very

large.

The Gauss-Newton iteration for gain estimation was tested on many thousands

of combinations of pixels of LADAR data. The gain estimates should have observed

a drop over time. This drop in gain is obvious in the background data shown in

Fig. 5.2. However, good algorithm performance was never observed. The algorithm

occasionally modeled the LADAR signals accurately. However, that only happened

when the iteration used the gain values to approximate the pulse shape. The Gauss-

Newton iteration algorithm never successfully measured the gain variation in the

LADAR data.
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5.3 Gain Equalization using Background Data

In this section, a second method of gain estimation is proposed and tested. This

method uses data from target-free (background light and electronic noise only) pixels

to observe the gain variation. The observed variation in APD gain is used to equalize

LADAR data that has targets. It is shown that this method improves the precision

of range estimates made with the LADAR system.

A modification of the photocurrent from Eq. 4.51 is used in this section. The

modified version includes a term for the background or noise power observed. It is

assumed that the background power is constant in the signal. The photocurrent is

related to the received optical power by

i(t) =
Gqη

hν
[Pr(t) + Pb] (5.40)

where G is the detector’s gain, q is the charge of an electron, η is the detector’s

quantum efficiency, h is Planck’s constant, and ν is the laser’s optical frequency. The

term Pb is the power from background light in the scene and other noise sources in

the system. This power level is measured before amplification (gain). Background

power is assumed constant and is amplified in the same way that the received laser

signal power is increased.

Ideally, the gain of the detector would be constant. However, it has been shown

in this dissertation and in [37] that gain fluctuates in APD arrays. Gain variation

distorts the shape of received laser pulses. In imaging LADAR systems using focal

planes, the gain variations can affect the entire array. Background light is amplified

by APDs in the same way that received laser signals are. Because the entire array is

affected by the gain variation, it is possible for pixels with no target present to appear

as though they have observed one because the signal level is fluctuating.

A relatively simple gain equalization algorithm is proposed and tested. This

algorithm uses data from target-free pixels to estimate the avalanche photodiode gain

over time. It is shown that the equalization algorithm can decrease range error in
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LADAR data. It is possible that this method could be applied to design of APD

arrays. A single or a few pixels could be isolated and used for measurement of gain

variation. That data would be available to the ROIC for gain equalization.

5.3.1 Gain Variation in Flash LADAR Data. The same LADAR data that

was shown in Sec. 5.1 and processed in Sec. 5.2.4 is used in this section. All of the

three-dimensional LADAR images are of a large target panel that was supported

manually. In image of the panel is shown in Fig. 5.1 and examples of range resolved

LADAR signals are shown in Fig. 5.8.

The data displayed in Fig. 5.8a is from a three-dimensional LADAR image

where the target panel was tilted -20 degrees with respect to the LOS. The tilt angle

was defined so that a negative tilt corresponded to the top of the target moving toward

the LADAR. Thus, a positive tilt implies that the panel’s top has moved away from

the sensor. In the case shown in Fig. 5.8a, the target panel was oriented perpendicular

to the ground. Because the LADAR viewed the panel from a tower, the top of the

panel is the part that is closest to the system. Range resolved signals are shown

in Fig. 5.8a. As the row number of these signals increases, the leading edge of the

recorded laser pulses moves to the right. The trailing edge is also shifted to the right

with increasing row number. However, the trailing edge does not shift as quickly as

the leading edge does.

The leading edges of pulses reflected off of the top and bottom of the target panel

are separated by about 2.5 samples. However, the trailing edges are only separated by

about 1.5 samples. The received laser pulses should have the same shape. However,

the gain on those pulses from the avalanche photodiode array varies over time. Thus,

the width of the recorded signals decreases as the target range increases.

In Fig. 5.8b, the panel was tilted so that its bottom is the part closest to

the LADAR. In this case, the signals shift to the left as the row number increases.

The tilt was 32 degrees. Because of the target panel tilt, the leading edges of the
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Figure 5.8: (a) Target panel tilt is -20 degrees. (b) Target panel tilt is 32 degrees.

recorded pulses are separated by about 3.5 samples. However, the trailing edges are

only separated by about 2 samples.

Inspection of the data displayed in Figs. 5.8a and 5.8b shows that the LADAR

signals recorded by the APD array are distorted in a predictable manner. The signals

in pixels closest to the LADAR are have the longest duration. Signals recorded in

pixels farther from the LADAR are narrower regardless of the orientation of the panel

with respect to the system. The cause of the distortion in laser pulse shape is gain

variation in the array of APDs.

5.3.2 Gain Variation Equalization. It is hypothesized that the gain of

the entire avalanche photodiode array drops when laser signals are detected. The

relationship between background photocurrent level ib(t) and gain is given by Eq.

5.40 with signal power Pr(t) = 0.

ib(t) =
Gqη

hν
Pb. (5.41)

Data from target-free pixels is shown in Fig. 5.9. There is significant fluctuation

in the background data. Thus, it is averaged over 108 frames and over multiple (thirty)
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Figure 5.9: (a) Background data with panel tilted -20 degrees. (b) Background
data with panel tilted 32 degrees.

pixels. The background signal level is steady for the first six samples. After that, the

background level drops by a factor of more than two. This drop in gain occurs at the

point where the target panel is located (see Fig. 5.8).

Averaged background data is used to estimate the time-varying gain. The gain

estimate Ĝ, which is written here as a function is time, is calculated using Eq. 5.41.

Ĝ(t) ∝ iB(t) (5.42)

where iB(t) is the average of background signals. This estimate of the gain is used to

correct the variation in the LADAR signals shown in Fig. 5.8. The data from those

plots, divided by the average background (that is, i(t)/iB(t)) is shown in Fig. 5.10.

The equalized data in Fig. 5.10a is from images with the panel tilted at -20

degrees (the raw data is shown in Fig. 5.8a). Gain equalization removed most of

the width variation in the pulses. However, the trailing edge of the row 112 pulse is

out of position compared to the pulses from rows 54, 73, and 93. But overall, the

gain equalization process has improved the quality of the data in spite of the row 112

outlier.
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Figure 5.10: (a) Target panel tilt is -20 degrees. (b) Target panel tilt is 32 degrees.

In Fig. 5.10b, the data from panel tilted 32 degrees from LOS is shown after

equalization. (The raw data is shown in Fig. 5.8b.) In this case, equalization worked

very well. The gain equalized laser pulses all have the same width regardless of their

position on the panel. Equivalently, the pulse width no longer depends on the range

to the target.

5.3.3 Range Measurements. In this section, raw and equalized LADAR

signals are used to make measurements of range to the target panel. The range

estimates were calculated by computing a threshold crossing. Specifically, the point

where the leading edge of the pulse is one-half the maximum height of the pulse is

considered to be the target range. The range estimate was determined using a linear

fit to the pulse’s leading edge. The fit used the points that were just above and below

the threshold.

The range estimation algorithm is illustrated in Fig. 5.11. The peak value of the

signal is located and a parabolic fit (show in red) is calculated to the points around

the peak. For range estimation, the threshold is set at one-half of the peak fit value
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Figure 5.11: Illustration of range estimation algorithm.

(shown as a broken green line). The range estimate is the location where the data

first crosses the threshold (shown as a solid green line).

It is common to use a matched filter when processing range-resolved data. How-

ever, the use of matched filters assumes that the shape of the received pulse is known.

Matched filters also assume that the background level is not changing. The gain vari-

ation is obviously distorting the pulse shape, making the use of a true matched filter

impossible.

It has also been shown that three-dimensional imaging LADARs with short

range sampling intervals such as this one sometimes fail to sample the received signal

completely [4]. The pulses shown in Fig. 5.8 take up most of the range record. If the

trigger had been off by a few nanoseconds, these pulses would not have been sampled

completely. When the pulse is sampled incompletely, correlation-based operations

such as matched filtering do not function as intended.
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Because of the gain variation, the distortion of the received laser pulses, and

the fact that pulses are sometimes sampled incompletely, an alternative to matched

filtering is desired. The threshold crossing technique described earlier and illustrated

in Fig. 5.11 is an acceptable alternative to the matched filter for this LADAR data

set. It is simple and performs well at range estimation.

The first range estimation result is shown in Fig. 5.12a. This data was collected

when the panel was tilted 32 degrees from the LADAR LOS. Examples of the raw and

equalized data used in these range calculations are shown in Figs. 5.8b and 5.10b,

respectively.

The raw range data in Fig. 5.12a does not match the true tilt of the target panel.

The 155 cm high panel, when tilted 32 degrees, has a depth of 82 cm. However, the

gain variation makes the target depth, as measured before equalization (shown in

blue), appear to be about 1.2 m. The range estimates made with the equalized data

(shown in red in Fig. 5.12a) do not match the target panel’s tilt exactly. However,

they are much more precise than the raw range measurements. The root mean squared

error (RMSE) for the gain equalized range estimates was 8 cm. The RMSE for the

raw data was 13 cm.

In Fig. 5.12b, the target panel was tilted 22 degrees from LADAR LOS. In this

case, gain variation in the raw data still causes a dramatic overestimate of the panel’s

tilt. The RMSE is 15 cm. The equalized data matched the slope of the panel almost

exactly. The gain equalized range measurements have an RMSE of only 4 cm. This

error is mostly due to noise in the laser signals themselves rather than gain variation

distortions.

In Fig. 5.12c, the target panel was oriented perpendicular to the LADAR’s

line-of-sight. The range error for the raw data was 10 cm. However, when the gain

equalized data was processed, the RMSE dropped to 4 cm. Because the target is

at basically the same range in all target pixels, the laser pulse distortion due to

gain variation should be roughly equal on all signals. However, there is still more
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Figure 5.12: (a) Target panel tilt is 32 degrees. (b) Target panel tilt is 22 degrees.
(c) Target panel tilt is 0 degrees. (d) Target panel tilt is -20 degrees.
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Table 5.1: Range Error in APD Ar-
ray LADAR Data.

Panel Tilt Raw Data RMSE Equalized Data RMSE

-20 deg. 9 cm 6 cm

0 deg. 10 cm 4 cm

9 deg. 14 cm 3 cm

15 deg. 15 cm 2 cm

22 deg. 15 cm 4 cm

27 deg. 14 cm 6 cm

32 deg. 13 cm 8 cm

fluctuation in the range estimates made with the raw data than with the equalized

data.

The final example of range estimation is illustrated in Fig. 5.12d. In this case

the target panel is -20 degrees from LOS. Raw and gain equalized data for this test

are illustrated in Figs. 5.8a and 5.10a. The sign change of the panel tilt causes the

range errors to occur opposite of how they appear in Figs. 5.12a-c where the tilt

angle was nonnegative. However, the gain variation technique still helped. For range

estimates made with raw data, the RMSE is 9 cm. Using gain equalization, the range

error drops to 6 cm.

The range RMSEs for the entire data collection are listed in Table 5.1. For

target panel tilt angles between 0 and 27 degrees, the raw data RMSE is at least

double the RMSE for range measurements made with the equalized data. For the

large magnitude tilt angles of -20 and 32 degrees, the raw data range RMSE is higher

than for the equalized data, but only by about 50%. Thus, there appears to be a limit

on the amount target tilt that the gain equalization algorithm can tolerate before its

performance degrades significantly.
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5.4 Chapter Summary

Avalanche photodiodes are used in LADAR systems to detect laser light reflected

from targets. Arrays of APDs can be very dense and compact, but can be challenging

to work with because of variations in the relationship between their input and output

signals. In Sec. 5.1, LADAR images collected by a system using an APD array as a

photodetector were shown. The effect of gain variation on the recorded signals was

illustrated in that section.

In Secs. 5.2 and 5.3, methods of gain equalization were proposed and tested. In

Sec. 5.2 a multidimensional Gauss-Newton method was used successfully on simulated

LADAR data. However, this technique did not work well on real LADAR data. In

Sec. 5.3, an equalization method that used target-free pixels was successfully demon-

strated. Through the use of a target panel in LADAR images, it was shown that

gain variation could introduce significant bias into range measurements. The gain

equalization method tested in Sec. 5.3 decreased, but did not eliminate, the range

bias in the three-dimensional LADAR images.
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VI. Conclusion

All of the research in this dissertation applies to the problem of making measure-

ments of range to a target using a LADAR system. However, range measurements

are affected by many different factors. Noise models, signal shapes, and detector elec-

tronics all influence the precision of LADAR range estimates. Thus, a wide variety of

subjects were discussed in the dissertation.

6.1 Poisson-Distributed LADAR Signal Models

In Chapter III, three different LADAR signal models were examined. These

models are all variations of work previously published in [4]. That paper assumes that

laser pulses received by LADAR systems can be modeled as a truncated parabola plus

a background noise level. It is also assumed that the LADAR system is shot-noise

limited, which means that the signal and noise follow the Poisson distribution.

In Sec. 3.1, the laser pulse model from [4] was revisited. The Cramer-Rao lower

bounds for range and other signal parameters derived in that paper were expressed

in terms of summations. In this dissertation, analytic approximations to those sum-

mations were derived.

LADAR systems are sometimes used to image targets beneath tree canopies. In

Sec. 3.2, the signal model is generalized to include two signal pulses. The first signal

represents the tree canopy and the second is the target on the ground. CRLBs were

derived for this model. It was shown that the presence of obscuration did not affect

the range CRLB for the obscured target.

Some targets observed by LADAR systems are extended. That is, their depth

is significant compared to the length of the transmitted laser pulse. In this case, the

reflection process varies the length of the received pulse. It had been assumed that the

pulse width in the received signal was known. But in Sec. 3.3, the width was treated

as an unknown for the purpose of CRLB derivations in order to model variations in

target depth. It was shown that the range CRLB is the same regardless of whether
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the pulse width was known or unknown. However, the CRLB is still dependent on

the pulse width in this case.

It was shown in Chapter III that the Poisson noise model used to simulated

shot-noise limited signals made calculation of maximum likelihood estimates difficult.

However, in most cases it was straightforward to create a relatively simple, though

suboptimal estimator which nearly achieved the CRLB. This fact was verified through

the use of Monte Carlo simulations.

6.2 Range Precision of LADAR Systems

Chapter IV of this dissertation focused on the topic of the precision of LADAR

range measurements. Some of the work in this chapter used the Poisson-distributed

signal models developed in Chapter III. Other analysis relied on signal models that

assumed additive white Gaussian, rather than Poisson noise. The use of laser pulse

shapes other than the truncated parabola was also discussed.

In Sec. 4.1, the range CRLB derived in Chapter III was discussed. The range

CRLB for a truncated parabolic pulse mixed with Gaussian rather than Poisson noise

was derived. It was shown that the Gaussian-noise CRLB is always less than the

Poisson-noise CRLB. Thus, range measurements are more precise in the presence of

Gaussian noise than when the signal is mixed with shot (Poisson) noise.

The topic of pulse averaging was also discussed in Sec. 4.1. It was also shown

that for a system that can divide a fixed amount of laser energy into multiple pulses,

that that range precision of a shot-noise limited system is maximized when all energy

is transmitted in a single pulse. That is, averaging decreases range precision unless

the total amount of pulse energy is increased.

In Sec. 4.2, it was noted that some LADAR systems operate at ranges of several

kilometers. Airborne systems in particular tend to operate at long ranges. Airborne

LADAR system often observe a scene from an oblique angle. Unless a target is

oriented normal to the LADAR line-of-sight, the laser pulse reflection process will
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distort the shape of the received laser signal. It was shown that if a nanosecond-class

duration beam that is a few inches in diameter at the transmitter propagates more

than a few kilometers, the effect of target orientation on range precision can not be

neglected.

In Sec. 4.2, the shape of the received laser signal was derived as a function of

target surface orientation and other system parameters. The CRLB was calculated

as a function of target tilt. The effect of mitigation strategies such as increasing

the transmitted beam size and decreasing the pulse duration was studied and the

limitations of those method were quantified. This analysis assumed a laser pulse with

a Gaussian shape and a received signal mixed with AWGN.

6.3 Gain Variation in APD Arrays

The topic of gain variation was studied in Chapter VI. Compact avalanche

photodiode arrays are being used to create three-dimensional LADAR images with

large numbers of pixels. Ideally, the amount of amplification, or gain, in an APD

would be constant. However, it has been shown in this dissertation and elsewhere

than gain in APD arrays varies over time. Gain variation distorts the recorded laser

signals and introduces bias into measurements of target range.

In the course of this dissertation research, a LADAR data collection experiment

was done to examine the effect of gain variation (see Sec. 5.1). Three-dimensional

images were collected using an Air Force Research Laboratory LADAR system. The

images were of a large target panel. The panel was tilted at various orientations with

respect to the LADAR line-of-sight. Examination of the effect of target tilt clearly

illustrated the effect of gain variation on range-resolved LADAR data. It was shown

that gain variation introduced bias into range measurements.

Gain variation degraded the ability of LADAR systems to make range measure-

ments. Therefore, a method of gain equalization that corrects for variations in the
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array of APDs was desired. In this dissertation, two methods of gain equalization

were proposed and tested.

The first method of gain equalization was developed in Sec. 5.2. This method

was based on the Gauss-Newton method of parameter estimation. A model was

developed for range-resolved LADAR signals observed by an array of avalanche pho-

todiodes in the presence of gain variation. This model assumed Gaussian-shaped laser

pulses and white Gaussian noise. The method was tested successfully on simulated

data. However, the Gauss-Newton method did not work well with real LADAR data

collected from the target panel. This relatively sophisticated approach relied on too

many assumptions, such as exact knowledge of the shape of the signals embedded in

the noisy data.

The second method of gain equalization was derived and tested in Sec. 5.3.

This method used averaged signals from target-free pixels to measure the change in

gain over time in the APD array. This background-averaging method was tested using

data collected from the target panel tilt tests. It was shown that the gain equalization

method based on background data reduced, though did not eliminate, the bias in the

range measurements to the target panel. Though this method did not eliminate the

problems introduced by gain variation in APD arrays, it had the advantage of being

quite simple. This method could potentially be implemented in near real-time in a

LADAR receiver’s ROIC.

6.4 Summary

Measurement of range to a target is one of the most fundamental problems

in the field of remote sensing. Short duration laser pulses make LADAR systems

ideal instruments for precise range measurement. This dissertation discussed limits

on range precision of LADAR measurements due to stochastic noise sources, the laser

pulse reflection process, and characteristics of current photodetectors. The work can

be used to model the performance of current LADARs and could help design future

LADAR systems.
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Appendix A. Photoelectron Statistics

Much of the analysis in this dissertation relies on the Poisson approximation. That is,

it is frequently assumed that probability distribution describing number of photoelec-

trons observed in an imaging LADAR has a Poisson distribution. In this appendix,

the origin of and justification for this assumption is discussed. Some of the derivations

used in the Poisson approximation are reviewed.

A.1 Integration of Intensity

One of the early references on photon statistics is “Some Effects of Target-

Induced Scintillation on Optical Radar Performance” by Goodman [11]. That paper

notes that the total energy W incident on an optical system’s receiving aperture is

W =

∞∫

−∞

∞∫

−∞

Ar(x, y)w(x, y)dxdy (A.1)

where x and y are the aperture coordinates, w(x, y) is the energy density in the

aperture plane, and Ar(x, y) is the binary receiver aperture function. For a circular

aperture with diameter Da, this function is

Ar(x, y) =





1 when
√

x2 + y2 ≤ Da/2

0 when
√

x2 + y2 > Da/2
. (A.2)

Using results from earlier works [33, 34] Goodman notes in Eq. 15 of [11] that the

total energy is approximately a gamma random variable. Therefore, the PDF of W

is

p(W ) =





1
Γ(M)

aMWM−1e−aW when W > 0

0 when W ≤ 0
(A.3)

where a and M are related so that the mean energy, which is denoted W̄ , is

W̄ =
M
a

. (A.4)
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The variance is the energy is

W 2 − W̄ 2 =
M
a2

. (A.5)

Goodman shows that

a =
M
W̄

(A.6)

and that M is the diversity or the number of spatial correlation cells subtended by

the aperture.

The second moment of the energy can be evaluated by integrating the autocor-

relation of the energy density function

W 2 =

∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞

Ar(x1, y1)Ar(x2, y2)Rw(x1, y1; x2, y2)dx1dy1dx2dy2. (A.7)

This integral requires the energy density autocorrelation Rw(x1, y1; x2, y2), which is

(Eq. 12 of [11])

Rw(x1, y1; x2, y2) = E [w(x1, y1)w(x2, y2)] . (A.8)

The diversity parameter is (Eq. 18 of [11])

M =
A2

r
∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

Ar(x1, y1)Ar(x2, y2)|γ(x1, y1; x2, y2)|2dx1dy1dx2dy2

(A.9)

where γ(x1, y1; x2, y2) is the complex degree of coherence (see Eq. 5.2-11 of [12]).

A.2 Photon Arrival Statistics

It is assumed that arrival of photons is a Poisson process [25]. Given incident

energy W , the distribution of the number of photons arriving in some time interval
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is a Poisson random variable.

p(k|W ) = 1
k!

N̄ke−N̄

where

k = 0, 1, 2, . . . .

(A.10)

where k is the number of photons arriving and N̄ is the average number of photons

observed. The mean and the energy W are related by

N̄ =
W

hν
. (A.11)

In the above equation, h is Planck’s constant and ν is the optical frequency.

The distribution of photons arriving conditioned on the energy is given by Eq.

A.10. However, the energy W is itself an random variable. The joint distribution of

k and W is just the product of the energy density from Eq. A.3 and the conditional

density from Eq. A.10. The joint density is

p(k, W ) = p(k|W )P (W ) (A.12)

=
1

k!
N̄ke−N̄ 1

Γ(M)
aMWM−1e−aW .

The marginal density of k is obtained by integrating over joint density p(k, W ).

p(k) =

∞∫

0

p(k,W )dW. (A.13)

It was shown in Eqs. 28-30 of [11] that this is

p(k) = Γ(k+M)
k!Γ(M)

(
1 + M

N̄

)−k
(
1 + N̄

M

)−M

where

k = 0, 1, 2, . . . .

. (A.14)
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Figure A.1: (a) Negative binomial densities with M = 1 and Poisson density.
(b) Negative binomial densities with M = 2 and Poisson density.

This is a negative binomial density with mean N̄ and diversity parameter M. The

diversity is given in Eq. A.9.

A.3 Poisson Approximation to Negative Binomial Distribution

The mean number of photons per speckle correlation cell is called the count

degeneracy parameter [13]. It is denoted δc .

δc =
N̄

M . (A.15)

It was noted in [11] that when the count degeneracy parameter becomes small

δc << 1 (A.16)

that the negative binomial density converges to the Poisson distribution with mean

N̄ . This characteristic is illustrated in the Fig. A.1. The plots in Fig. A.1 show

that as the mean number of photons per speckle cell approaches zero, the negative

binomial density approaches the Poisson density.
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Figure A.2: (a) Negative binomial densities with δc = 0.5 and Poisson densities.
(b) Negative binomial densities with δc = 0.75 and Poisson densities.

The negative binomial density also converges to the Poisson density as the

diversity goes to infinity [5]. In this case the convergence is very slow and is difficult

to illustrate. In Fig. A.2, the ratio of the mean number of photons to the diversity

δc = N̄/M is not near zero. Therefore, the condition required by Eq. A.16 is not

satisfied. However, asM gets large, the negative binomial density is slowly converging

to the Poisson density.

A.4 Photon Arrivals and Quantum Efficiency

LADAR systems rely on photodetectors to convert photons to a measurable

signal. The process of converting photons to electrons (typically called photoelectrons)

is imperfect. That is, some photons incident on the detector will fail to convert to

signal. The fraction of photons converted to photoelectrons is called the quantum

efficiency and is denoted η.

The statistics describing photon arrival densities were derived using mathemat-

ics that model optical propagation. Those derivations tell how many photons are

incident on a detector in some time interval. However, only some of the incident
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photons are successfully converted to photoelectrons by that detector. Undetected

photons are not of interest. It is the photoelectron density that is desired.

In “Effect of random deletion and additive noise on bunched and anitbunched

photon-counting statistics”, Teich and Saleh [50] considered several different photon

arrival densities. They assumed that the probability of each photon being converted

to a photoelectron was fixed and statistically independent of the conversion process for

all other arriving photons. They proved that if photon arrivals are Poisson distributed

with mean N̄ , that the photoelectron density is ηN̄ . For a negative binomial density

with mean N̄ and diversity M, the photoelectron density is also negative binomial

with mean ηN̄ . They also showed that the diversity of the photoelectron density is

the same as the diversity of the photon density.
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Appendix B. Parabolic and Gaussian Pulse Properties

This appendix contains a discussion of the duration and bandwidth of the temporal

LADAR signal models used in this dissertation. The parabolic pulse shapes that are

used in Chapters II and III are discussed. The Gaussian pulse models from Chapters

IV and V are also reviewed. The full-width half-maxima of these pulses are calculated.

The energy spectral densities are derived using the Fourier transforms of the pulses.

The durations and bandwidths of parabolic and Gaussian pulses are compared.

The signals described in this appendix are the photodetector output signals.

The energy or power in these signals is generally not equal to the optical energy or

power in the received laser pulse. The photocurrent signals are measured in units of

normalized current or normalized voltage. These normalized units are proportional

to the received optical power observed by the LADAR photodetector. These relation-

ships are explained in more detail in Sec. B.1.

B.1 Parabolic Pulse Properties

The parabolic pulse equation centered at time zero is

pp(t) = G

(
1− t2

p2
w

)
rect

(
t

2pw

)
. (B.1)

The parabolic pulse’s FWHM is given by Eq. 4.45. The Fourier transform of the

parabolic pulse is

Pp(f) =

pw∫

−pw

pp(t)e
−i2πftdt (B.2)

= G

pw∫

−pw

e−i2πftdt− G

p2
w

pw∫

−pw

t2e−i2πftdt

= 4pwG

[
sin (2πpwf)− (2πpwf) cos (2πpwf)

(2πpwf)3

]
.
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Figure B.1: (a) Parabolic pulse with width pw = 10 ns and peak normalized voltage

G = 2 W1/2.
(b) Pulse Fourier transforms for widths pw = 5, 10, and 20 ns.

A 10 ns parabolic pulse is illustrated in Fig. B.1a. Fourier transforms for 5, 10,

and 20 ns pulses are shown in Fig. B.1b. The pulses’s units are normalized voltage,

which is the voltage divided by the square root of the resistance (e.g. Volts per root

Ohm). The units of normalized voltage are equal to the square root of the power (e.g.

Watts).

√
Power =

√
Voltage× Current

=

√
Voltage× Voltage

Resistance

=
Voltage√
Resistance

. (B.3)

The reason for using normalized voltage in place of regular voltage is that normalized

voltage produces energy and power spectra with the correct units of energy times

time and power times time, respectively.

Alternately, the photocurrent could be analyzed in terms of normalized current.

Normalized current is current times the square root of resistance (e.g. Amps times
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root Ohms).

√
Power =

√
Voltage× Current

=
√

Current× Current× Resistance

= Current×
√

Resistance. (B.4)

As with normalized voltage, normalized current will produce energy and power spectra

with the correct units of energy times time and power times time.

A signal’s energy spectral density (ESD) is the magnitude squared of its Fourier

transform [32]. The ESD of the parabolic pulse from Eq. B.1, which is denoted Gp(f),

is

Gp(f) = |Pp(f)|2 = 16p2
wG2

[
sin (2πpwf)− (2πpwf) cos (2πpwf)

(2πpwf)3

]2

. (B.5)

The ESDs for parabolic pulses with various widths are illustrated in Fig. B.2a.

In most LADAR systems, the received signal is digitally sampled. In a sampled

signal, pulse energy inside the Nyquist frequency, which is half the sampling frequency

(fn = fs/2), is sampled properly. However, energy outside than the Nyquist frequency

is aliased [30]. Aliasing will cause interference and will degrade the performance of

parameter estimation techniques. The fraction of pulse energy that is aliased can be

calculated by integrating the ESD over frequencies with magnitudes greater than fn,

then dividing by the total energy. Since the ESD has even symmetry, the fraction of

energy outside the Nyquist frequency is

Ap(fn) =

∞∫
fn

Gp(f)df

∞∫
0

Gp(f)df

=

∞∫
0

Gp(f)df −
fn∫
0

Gp(f)df

∞∫
0

Gp(f)df

= 1− 2

Ep

fn∫

0

Gp(f)df (B.6)
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where the energy in the parabolic pulse Ep is

Ep =

∞∫

−∞

Gp(f)df =

∞∫

−∞

|Pp(f)|2df. (B.7)

An efficient way to calculate the pulse energy is through the use of Parseval’s theorem,

which states that ∞∫

−∞

|Pp(f)|2df =

∞∫

−∞

|pp(t)|2dt. (B.8)

Combining Eqs. B.1, B.7, and B.8 yields

Ep =

pw∫

−pw

[
G

(
1− t2

p2
w

)]2

dt =
16

15
G2pw. (B.9)

Using this result in Eq. B.6 shows that the fraction of energy that is greater than the

Nyquist frequency can be written

Ap(fn) = 1− 30pw

fn∫

0

[
sin (2πpwf)− (2πpwf) cos (2πpwf)

(2πpwf)3

]2

df. (B.10)

The fraction of a parabolic pulse’s energy outside the Nyquist frequency is il-

lustrated in Fig. B.2b. For the 20 ns pulse, about 3 × 10−4% of the pulse energy is

aliased when the sampling rate is one Gigahertz (fn = 500 MHz). However, for the 5

ns pulse, about 2× 10−2% of the energy is aliased.

B.2 Gaussian Pulse Properties

Let the Gaussian pulse equation is

pg(t) = G exp

(
− t2

2w2

)
(B.11)

166



−0.5 0 0.5
10

−28

10
−26

10
−24

10
−22

10
−20

10
−18

10
−16

10
−14

Frequency (GHz)

E
ne

rg
y 

S
pe

ct
ra

l D
en

si
ty

 (
J/

H
z)

ESD of Parabolic Pulse

 

 

G=2W1/2
p

w
=5ns

p
w
=10ns

p
w
=20ns

(a)

0 0.1 0.2 0.3 0.4 0.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Nyquist Frequency (GHz)

E
ne

rg
y 

O
ut

si
de

 N
yq

ui
st

 F
re

qu
en

cy

Fraction of Energy Outside Nyquist Frequency

 

 

p
w
=5ns

p
w
=10ns

p
w
=20ns

(b)

Figure B.2: (a) Parabolic pulse energy spectrum for pulse widths pw = 5, 10, and
20 ns.
(b) Fraction of pulse energy outside Nyquist frequency.

where G is the gain and w is the variable describing the width of the pulse. At

distance w from the pulse center, the Gaussian pulses’s amplitude is e−1/2 times its

peak height. The full-width half-maximum of this pulse is given by Eq. 4.36.

The Fourier transform of the parabolic pulse is

Pg(f) =

∞∫

−∞

pg(t)e
−i2πftdt =

√
2πwGe−2(πwf)2 . (B.12)

The Gaussian pulse and its Fourier transform are illustrated in Fig. B.3. The ESD

of the Gaussian pulse, which is denoted Gg(f), is

Gg(f) = |Pg(f)|2 = 2πw2G2e−(2πwf)2 . (B.13)

The energy in the Gaussian pulse, denoted Eg, is

Eg =

∞∫

−∞

Gg(f)dt =
√

πwG2. (B.14)

167



The fraction of energy that is outside the Nyquist frequency, denoted Ag(fn), is

Ag(fn) =

∞∫
fn

Gg(f)df

∞∫
0

Gg(f)df

= 1− 2

Eg

fn∫

0

Gg(f)df

= 1− 4πw2G2

√
πwG2

fn∫

0

e−(2πwf)2df

= 1− 2√
π

2πwfn∫

0

e−u2

du

= 1− erf(2πwfn) (B.15)

where the change of variable u = 2πwf was used and

erf(x) =
2√
π

x∫

0

e−u2

du (B.16)

is the error function (see Eq. 7.1.1 of [1]). The ESD of the Gaussian pulse and energy

fraction are illustrated in Fig. B.4. The ESD of the Gaussian pulse decays much

faster than the ESD for the parabolic pulse (shown in Fig. B.2a). Similarly, the

function describing the fraction of Gaussian pulse energy Ag(fn) decays very quickly

compared to the same function for the Gaussian pulse.

B.3 Parabolic and Gaussian Pulse Comparison

The parabolic and Gaussian pulses are compared in Fig. B.5. Both pulses have

a 10 ns FWHM and 1µJ of energy. The gain for the pulses and the FWHM are

almost identical. However, the parabolic pulse is narrower (see Fig. B.5a) and its

energy fraction that falls outside a Nyquist frequency is much higher (see Fig. B.5b).
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Figure B.3: (a) Gaussian pulse with width w = 5 ns and peak normalized voltage

G = 2 W1/2.
(b) Pulse Fourier transforms for widths w = 2, 5, and 10 ns.
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Figure B.4: (a) Gaussian pulse energy spectrum for pulse widths w = 2, 5, and 10
ns.
(b) Fraction of pulse energy outside Nyquist frequency.

169



−20 −15 −10 −5 0 5 10 15 20
0

2

4

6

8

10

12

Time (ns)

N
or

m
al

zi
ed

 V
ol

ta
ge

 (
W

1/
2 )

Parabolic and Gaussian Pulses

 

 

E=1µJ
FWHM=10ns

Parabolic Pulse
Gaussian Pulse
FWHM (τ

p
)

FWHM (τ
g
)

(a)

0 0.1 0.2 0.3 0.4 0.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Nyquist Frequency (GHz)

E
ne

rg
y 

O
ut

si
de

 N
yq

ui
st

 F
re

qu
en

cy

Fraction of Energy Outside Nyquist Frequency

 

 

E=1µJ
FWHM=10ns

Parabolic Pulse
Gaussian Pulse

(b)

Figure B.5: (a) Parabolic and Gaussian pulses with 10 ns FWHM and 1µJ energy.
(b) Fraction of pulse energy outside Nyquist frequency.

B.4 Power Full-Width Half-Maximum

The FWHM can be measured from the pulse’s power instead of the pulse’s

normalized voltage. The power is the normalized voltage squared. The power FWHM

for a parabolic pulse is

δp = 2pw

(
1− 1√

2

)1/2

. (B.17)

The power FWHM for a Gaussian pulse is

δg = 2w [log(2)]1/2 . (B.18)

The power FWHMs for parabolic and Gaussian pulses are illustrated in Fig. B.6.

B.5 Time-Bandwidth Products

The time-bandwidth product (TBP) of a waveform is used as a measure of its

quality. It is a measure of the compactness of a waveform in both time and frequency.

The TBP is computed in the same way as beam quality was calculated in Chapter II.

It is the product of the mean square duration σt and the mean square bandwidth σf
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Figure B.6: (a) Power FWHM for parabolic pulses.
(b) Power FWHM for Gaussian pulses.

of a waveform [52].

TBP = σtσf . (B.19)

Given arbitrary waveform p(t), the quantities needed to calculate the time-bandwidth

product are

σ2
t =

∞∫
−∞

t2p2(t)dt

∞∫
−∞

p2(t)dt

(B.20)

and

σ2
f =

∞∫
−∞

f 2 |P (f)|2 df

∞∫
−∞

|P (f)|2 df

(B.21)

where P (f) is the Fourier transform of the waveform.

The waveform uncertainty relation is a lower bound on the time-bandwidth

product of any waveform (see p. 600 of [52]). The waveform uncertainty relation is

σtσf ≥ 1

4π
. (B.22)
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For the Gaussian pulse from Eq. B.11, the mean square duration squared is

σ2
t−gaussian =

w2

2
(B.23)

and the mean square bandwidth squared is

σ2
f−gaussian =

1

8π2w2
. (B.24)

Thus, the time-bandwidth product for a Gaussian pulse is

TBPgaussian =
1

4π
≈ 0.0796. (B.25)

Comparison of this result with the waveform uncertainty relation (Eq. B.22) shows

that the Gaussian waveform achieves the bound. It is the only waveform that achieves

this bound.

Given the parabolic pulse from Eq. B.1, the mean square duration squared is

σ2
t−parabolic =

p2
w

7
(B.26)

and the mean square bandwidth squared is

σ2
f−parabolic =

5

8π2p2
w

. (B.27)

Thus, the time-bandwidth product for a parabolic pulse is

TBPparabolic =
1

2π

(
5

14

)1/2

≈ 0.0951. (B.28)

Comparison of the time-bandwidth products of the Gaussian pulse (Eq. B.25)

and the parabolic pulse (Eq. B.28) shows that, as expected, the parabolic pulse’s

time-bandwidth product is greater. However, the difference is not that great. The
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ratio is
TBPparabolic

TBPgaussian

=

(
10

7

)1/2

≈ 1.195. (B.29)

Thus, the parabolic pulse’s TBP is less than 20% higher than for the Gaussian pulse.

Therefore, the truncated parabolic pulse is a relatively compact waveform.

The mean squared duration of the Gaussian pulse in terms of the FWHM is

(see Eqs. 4.36 and B.23)

σt−gaussian =
τg

4 [log(2)]1/2
≈ 0.300τg. (B.30)

For the parabolic pulse, the mean squared duration is (see Eqs. 4.45 and B.26)

σt−parabolic =
τp√
14
≈ 0.267τp. (B.31)

The duration of the parabolic pulse is shorter than the duration of the Gaussian pulse

by over 10%. The parabolic pulse is an example of a pulse that is a compact in the time

domain. It is the relatively wide bandwidth of the parabolic pulse, which is illustrated

in Fig. B.5, that makes its TBP greater than the Gaussian pulse’s time-bandwidth

product.
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Appendix C. Lower Bound on Estimator Variance

In this appendix, it is demonstrated that the reciprocal of any diagonal element of a

Fisher information matrix is a lower bound for the Cramer-Rao lower bound associated

with that parameter. In other words, the FIM diagonal element’s reciprocal is a lower

bound on the variance of unbiased parameter estimates. However, it is generally a

looser lower bound than the CRLB.

The fact FIM diagonal element reciprocals are lower bounds for the CRLB has

already been noted by Van Trees for the special case of 2×2 Fisher information matri-

ces [52]. However, that reference does not discuss cases where the Fisher information

matrix is larger than 2×2. In this appendix it is shown that the property is true for

any nonsingular FIM, regardless of its size.

C.1 Decomposition of the Fisher Information Matrix

Fisher information matrices are nonnegative definite. This follows from the fact

that they can be defined as covariance matrices [23]. It is possible for the FIM to be

singular. In that case, the FIM inverse does not exist and there are no unbiased finite

variance estimators of the unknown parameters [49].

If the FIM is also nonsingular, then it is positive definite. Any positive definite

matrix has the following eigenvalue decomposition [36].

J = UΣUH (C.1)

where U is a unitary matrix and Σ is diagonal. The notation H denotes Hermitian

(conjugate) transpose. By exploiting the fact that U is unitary and Σ is diagonal,

Eq. C.1 can be written

J =
M∑

m=1

λmumuH
m (C.2)

where M is number of rows and columns in the FIM. The vector um is the m-th

column of U.

U = [u1 u2 . . . uM ] . (C.3)
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The diagonal elements of Σ are denoted λm. Since it has been assumed that the FIM

is positive definite, all of its eigenvalues are positive [18].

λm > 0 ∀ m. (C.4)

The inverse of the Fisher information matrix is

J−1 =
M∑

m=1

1

λm

umuH
m. (C.5)

The Cramer-Rao lower bound for estimates of the n-th parameter is the reciprocal of

the n-th diagonal element of the inverse of the FIM. That is,

Var
[
θ̂n

]
≥ [

J−1
]
nn

. (C.6)

Combining Eqs. C.5 and C.6 produces

Var
[
θ̂n

]
≥

[
M∑

m=1

1

λm

umuH
m

]

nn

(C.7)

=
M∑

m=1

1

λm

[um]n ([um]n)∗

=
M∑

m=1

1

λm

∣∣∣[U]n,m

∣∣∣
2

.

C.2 Relationship Between CRLB and FIM Diagonal Elements

In this section, the relationship between the Cramer-Rao lower bound and the

diagonal elements of the Fisher information matrix is studied. Using Eq. C.2, the

n-th diagonal element of the FIM can be written

[J]nn =
M∑

m=1

λm

∣∣∣[U]n,m

∣∣∣
2

. (C.8)
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Let

an,m =
√

λm

∣∣∣[U]n,m

∣∣∣ (C.9)

and

bn,m =
1√
λm

∣∣∣[U]n,m

∣∣∣ . (C.10)

Eqs. C.8 and C.9 combine to form

[J]nn =
M∑

m=1

a2
n,m. (C.11)

Eqs. C.6, C.7, and C.10 combine to produce

[
J−1

]
nn

=
M∑

m=1

b2
n,m. (C.12)

The Cauchy-Schwarz-Buniakowsky inequality is (p. 1049 of [14])

(
M∑

m=1

a2
n,m

)(
M∑

m=1

b2
n,m

)
≥

(
M∑

m=1

an,mbn,m

)2

. (C.13)

All real unitary matrices are orthogonal. Because U is orthogonal, its rows and

columns are each orthonormal bases [23]. Using this fact, along with Eqs. C.9 and

C.10, shows that
M∑

m=1

an,mbn,m =
M∑

m=1

∣∣∣[U]n,m

∣∣∣
2

= 1 (C.14)

Therefore,
M∑

m=1

b2
n,m ≥ 1

M∑
m=1

a2
n,m

. (C.15)

When Eq. C.15 is combined with Eqs. C.11 and C.12, the following inequality is

produced.
[
J−1

]
nn
≥ 1

[J]nn

. (C.16)
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Combining this result with the CRLB from Eq. C.7 produces a lower bound for the

variance of unbiased estimates of parameter θn.

Var
[
θ̂n

]
≥ 1

[J]nn

. (C.17)

This bound is generally looser than the CRLB. However it is of value when there is a

complicated Fisher information matrix that is cumbersome to invert. In that case, a

simple lower bound can be obtained by simply taking the reciprocal of the appropriate

FIM diagonal element.
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